Directed functional connectivity of the sensorimotor system in young and older individuals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F23%3A10475788" target="_blank" >RIV/00216208:11110/23:10475788 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uV9i5OcXQU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uV9i5OcXQU</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fnagi.2023.1222352" target="_blank" >10.3389/fnagi.2023.1222352</a>
Alternative languages
Result language
angličtina
Original language name
Directed functional connectivity of the sensorimotor system in young and older individuals
Original language description
Introduction: Studies in the sensorimotor system of older versus young individuals have shown alterations in functional connectivity and organization. Our objective was to explore the implications of these differences in terms of local organizations, and to identify processes that correlate with neuropsychological parameters. Methods: Using a novel multivariate analysis method on resting-state functional MRI data obtained from 50 young and 31 older healthy individuals, we identified directed 4-node functional pathways within the sensorimotor system and examined their correlations with neuropsychological assessments. Results: In young individuals, the functional pathways were unidirectional, flowing from the primary motor and sensory cortices to higher motor and visual regions. In older individuals, the functional pathways were more complex. They originated either from the calcarine sulcus or the insula and passed through mutually coupled high-order motor areas before reaching the primary sensory and motor cortices. Additionally, the pathways in older individuals that resembled those found in young individuals exhibited a positive correlation with years of education.Discussion: The flow pattern of young individuals suggests efficient and fast information transfer. In contrast, the mutual coupling of high-order motor regions in older individuals suggests an inefficient and slow transfer, a less segregated and a more integrated organization. The differences in the number of sensorimotor pathways and of their directionality suggests reduced efferent degenerated pathways and increased afferent compensated pathways. Furthermore, the positive effect of years of education may be associated with the Cognitive Reserve Hypothesis, implying that cognitive reserve could be maintained through specific information transfer pathways.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30103 - Neurosciences (including psychophysiology)
Result continuities
Project
<a href="/en/project/NV19-04-00233" target="_blank" >NV19-04-00233: Clinical, Imaging and Biological predictors of effects associated with deep brain stimulation in Parkinson’s disease</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Aging Neuroscience
ISSN
1663-4365
e-ISSN
1663-4365
Volume of the periodical
15
Issue of the periodical within the volume
October
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
1222352
UT code for WoS article
001087868200001
EID of the result in the Scopus database
—