Diagnostic and Prognostic Profiling of Nucleocytoplasmic Shuttling Genes in Hepatocellular Carcinoma
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11110%2F23%3A10478050" target="_blank" >RIV/00216208:11110/23:10478050 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7VvQeaIyl3" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7VvQeaIyl3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/fb2023069040133" target="_blank" >10.14712/fb2023069040133</a>
Alternative languages
Result language
angličtina
Original language name
Diagnostic and Prognostic Profiling of Nucleocytoplasmic Shuttling Genes in Hepatocellular Carcinoma
Original language description
One of the key features of eukaryotic cells is the separation of nuclear and cytoplasmic compartments by a double-layer nuclear envelope. This separation is crucial for timely regulation of gene expression, mRNA biogenesis, cell cycle, and differentiation. Since transcription takes place in the nucleus and the major part of translation in the cytoplasm, proper distribution of biomolecules between these two compartments is ensured by nucleocytoplasmic shuttling proteins - karyopherins. Karyopherins transport biomolecules through nuclear pores bidirectionally in collaboration with Ran GTPases and utilize GTP as the source of energy. Different karyopherins transport different cargo molecules that play important roles in the regulation of cell physiology. In cancer cells, this nucleocytoplasmic transport is significantly dysregulated to support increased demands for the import of cell cycle-promoting biomolecules and export of cell cycle inhibitors and mRNAs. Here, we analysed genomic, transcriptomic and proteomic data from published datasets to comprehensively profile karyopherin genes in hepatocellular carcinoma. We have found out that expression of multiple karyopherin genes is increased in hepatocellular carcinoma in comparison to the normal liver, with importin subunit α-1, exportin 2, importin subunit β-1 and importin 9 being the most over-expressed. More-over, we have found that increased expression of these genes is associated with higher neoplasm grade as well as significantly worse overall survival of liver cancer patients. Taken together, our bioinformatic data-mining analysis provides a comprehensive geno-mic and transcriptomic landscape of karyopherins in hepatocellular carcinoma and identifies potential members that could be targeted in order to develop new treatment regimens.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30204 - Oncology
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Folia Biologica
ISSN
0015-5500
e-ISSN
2533-7602
Volume of the periodical
69
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
16
Pages from-to
133-148
UT code for WoS article
001177843700002
EID of the result in the Scopus database
2-s2.0-85186751805