All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MicrAnt: Towards Regression Task Oriented Annotation Tool for Microscopic Images

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11140%2F20%3A10418632" target="_blank" >RIV/00216208:11140/20:10418632 - isvavai.cz</a>

  • Alternative codes found

    RIV/00669806:_____/20:10418632

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-51002-2_15" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-51002-2_15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-51002-2_15" target="_blank" >10.1007/978-3-030-51002-2_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MicrAnt: Towards Regression Task Oriented Annotation Tool for Microscopic Images

  • Original language description

    Annotating a dataset for training a Supervised Machine Learning algorithm is time and annotator&apos;s attention intensive. Our goal was to create a tool that would enable us to create annotations of the dataset with minimal demands on expert&apos;s time. Inspired by applications such as Tinder, we have created an annotation tool for describing microscopic images. A graphical user interface is used to select from a couple of images the one with the higher value of the examined parameter. Two experiments were performed. The first compares the speed of annotation of our application with the commonly used tool for processing microscopic images. In the second experiment, the texture description was compared with the annotations from MicrAnt application and commonly used application. The results showed that the processing time using our application is 3 times lower and the Spearman coefficient increases by 0.05 than using a commonly used application. In an experiment, we have shown that the annotations processed using our application increase the correlation of the studied parameter and texture descriptors compared with manual annotations.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    30502 - Other medical science

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007280" target="_blank" >EF17_048/0007280: Application of Modern Technologies in Medicine and Industry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science

  • ISBN

    978-3-030-51001-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    209-218

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Novi Sad; Serbia

  • Event date

    Jul 16, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article