RNA-sequencing of myxoinflammatory fibroblastic sarcomas reveals a novel SND1::BRAF fusion and 3 different molecular aberrations with the potential to upregulate the TEAD1 gene including SEC23IP::VGLL3 and TEAD1::MRTFB gene fusions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11140%2F22%3A10453039" target="_blank" >RIV/00216208:11140/22:10453039 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W5zx1Y31dk" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W5zx1Y31dk</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00428-022-03368-7" target="_blank" >10.1007/s00428-022-03368-7</a>
Alternative languages
Result language
angličtina
Original language name
RNA-sequencing of myxoinflammatory fibroblastic sarcomas reveals a novel SND1::BRAF fusion and 3 different molecular aberrations with the potential to upregulate the TEAD1 gene including SEC23IP::VGLL3 and TEAD1::MRTFB gene fusions
Original language description
Myxoinflammatory fibroblastic sarcoma (MIFS) has been shown to harbor various recurrent molecular aberrations; most of which, however, seem to be present in only a minority of cases. In order to better characterize the molecular underpinnings of MIFS, fourteen cases were analyzed by targeted RNA-sequencing (RNA-seq), VGLL3 enumeration FISH probe, and BRAF break-apart and enumeration probes. Neither t(1;10)(p22;q24) nor BRAF gene amplifications were found. However, VGLL3 gene amplification was detected in 5 cases by FISH which corresponded with an increase in VGLL3 expression detected by RNA-seq. In 1 of these cases, RNA-seq additionally revealed a novel SND1::BRAF fusion. Two of the 9 cases lacking VGLL3 amplification harbored either a SEC23IP::VGLL3 or a TEAD1::MRTFB rearrangement by RNA-seq, both confirmed by RT-PCR and Sanger sequencing. The detected molecular aberrations have a potential to either activate the expression of genes regulated by the transcription factors of the TEAD family, which are involved in tumor initiation and progression, or switch on the MEK/ERK signaling cascade, which plays an important role in cell cycle progression. Our results broaden the molecular genetic spectrum of MIFS and point toward the importance of the VGLL3-TEAD interaction, as well as the deregulation of the MEK/ERK pathway in the pathogenesis of MIFS, and may represent a potential target for therapy of recurrent or advanced disease.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30109 - Pathology
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Virchows Archiv
ISSN
0945-6317
e-ISSN
1432-2307
Volume of the periodical
481
Issue of the periodical within the volume
4
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
613-620
UT code for WoS article
000819721300002
EID of the result in the Scopus database
2-s2.0-85133274162