All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F16%3A10328690" target="_blank" >RIV/00216208:11160/16:10328690 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0021967316305593" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0021967316305593</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chroma.2016.05.004" target="_blank" >10.1016/j.chroma.2016.05.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine

  • Original language description

    This work describes the development of two methods involving supported liquid extraction (SLE) sample treatment followed by ultra-high performance liquid chromatography or ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS and UHPSFC-MS/MS) for the screening of 43 anabolic agents in human urine. After evaluating different stationary phases, a polar-embedded C18 and a diol columns were selected for UHPLC-MS/MS and UHPSFC-MS/MS, respectively. Sample preparation, mobile phases and MS conditions were also finely tuned to achieve highest selectivity, chromatographic resolution and sensitivity. Then, the performance of these two methods was compared to the reference routine procedure for steroid analyses in anti-doping laboratories, which combines liquid-liquid extraction (LLE) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For this purpose, urine samples spiked with the compounds of interest at five different concentrations were analyzed using the three analytical platforms. The retention and selectivity of the three techniques were very different, ensuring a good complementarity. However, the two new methods displayed numerous advantages. The overall procedure was much faster thanks to high throughput SLE sample treatment using 48-well plates and faster chromatographic analysis. Moreover, the highest sensitivity was attained using UHPLC-MS/MS with 98% of the doping agents detected at the lowest concentration level (0.1 ng/mL), against 76% for UHPSFC-MS/MS and only 14% for GC-MS/MS. Finally, the weakest matrix effects were obtained with UHPSFC-MS/MS with 76% of the analytes displaying relative matrix effect between -20 and 20%, while the GC-MS/MS reference method displayed very strong matrix effects (over 100%) for all of the anabolic agents.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CB - Analytical chemistry, separation

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chromatography A

  • ISSN

    0021-9673

  • e-ISSN

  • Volume of the periodical

    1451

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    145-155

  • UT code for WoS article

    000377725900017

  • EID of the result in the Scopus database

    2-s2.0-84966716386