All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F17%3A10362216" target="_blank" >RIV/00216208:11160/17:10362216 - isvavai.cz</a>

  • Result on the web

    <a href="http://pubs.acs.org/doi/10.1021/acs.analchem.7b00400" target="_blank" >http://pubs.acs.org/doi/10.1021/acs.analchem.7b00400</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.analchem.7b00400" target="_blank" >10.1021/acs.analchem.7b00400</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase

  • Original language description

    A proof of concept study involving the online coupling of automatic dispersive liquid liquid microextraction (DLLME) to inductively coupled plasma optical emission spectrometry (ICP OES) with direct introduction and analysis of the organic extract is herein reported for the first time. The flow-based analyzer features a lab-in-syringe (LIS) setup with an integrated stirring system, a Meinhard nebulizer in combination With a heated single-pass spray chamber, and a rotary injection valve, used as an online interface between the microextraction system and the detection instrument. Air-segmented flow was used for delivery of a fraction of the nonwater miscible extraction phase, 12 mu L of xylene, to the nebulizer. All sample preparative steps including magnetic stirring assisted DLLME were carried out inside the syringe void volume as a size-adaptable yet sealed mixing and extraction chamber. Determination of trace level concentrations of cadmium, copper, lead, and silver as analytes has been demonstrated by microextraction as diethyldithiophosphate (DDTP) complexes. The automatic LIS-DLLME method features quantitative metal extraction, even in troublesome sample matrixes, such as seawater, salt, and fruit juices, with relative recoveries within the range of 94-103%, 93-100%, and 92-99%, respectively, Furthermore, no statistically significant differences at the 0.05 significance level were found between concentration values experimentally obtained and the certified values of two serum standard reference materials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10406 - Analytical chemistry

Result continuities

  • Project

    <a href="/en/project/GA15-10781S" target="_blank" >GA15-10781S: On-line hyphenation of automated extraction processes with liquid chromatography for complete sample analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analytical Chemistry

  • ISSN

    0003-2700

  • e-ISSN

  • Volume of the periodical

    89

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    3787-3794

  • UT code for WoS article

    000397478300074

  • EID of the result in the Scopus database

    2-s2.0-85018432772