All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efavirenz reduces renal excretion of lamivudine in rats by inhibiting organic cation transporters (OCT, Oct) and multidrug and toxin extrusion proteins (MATE, Mate)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F18%3A10382890" target="_blank" >RIV/00216208:11160/18:10382890 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.plos.org/10.1371/journal.pone.0202706" target="_blank" >http://dx.plos.org/10.1371/journal.pone.0202706</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0202706" target="_blank" >10.1371/journal.pone.0202706</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efavirenz reduces renal excretion of lamivudine in rats by inhibiting organic cation transporters (OCT, Oct) and multidrug and toxin extrusion proteins (MATE, Mate)

  • Original language description

    Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor used in first-line combination antiretroviral therapy (cART). It is usually administered with nucleoside reverse transcriptase inhibitors (NRTI), many of which are substrates of OCT uptake solute carriers (SLC22A) and MATE (SLC47A), P-gp (MDR1, ABCB1), BCRP (ABCG2), or MRP2 (ABCC2) efflux transporters. The aim of this study was to evaluate the inhibitory potential of efavirenz towards these transporters and investigate its effects on the pharmacokinetics and tissue distribution of a known Oct/Mate substrate, lamivudine, in rats. Accumulation and transport assays showed that efavirenz inhibits the uptake of metformin by OCT1-, OCT2 and MATE1-expressing MDCK cells and reduces transcellular transport of lamivudine across OCT1/OCT2-and MATE1-expressing MDCK monolayers. Only negligible inhibition of MATE2-K was observed in HEK-MATE2-K cells. Efavirenz also reduced the efflux of calcein from MDCK-MRP2 cells, but had a rather weak inhibitory effect on Hoechst 33342 accumulation in MDCK-MDR1 and MDCK-BCRP cells. An in vivo pharmacokinetic interaction study in male Wistar rats revealed that intravenous injection of efavirenz or the control Oct/Mate inhibitor cimetidine significantly reduced the recovery of lamivudine in urine and greatly increased lamivudine retention in the renal tissue. Co-administration with efavirenz or cimetidine also increased the AUC(0-infinity) value and reduced total body clearance of lamivudine. These data suggest that efavirenz is a potent inhibitor of OCT/Oct and MATE/Mate transporters. Consequently, it can engage in drug-drug interactions that reduce renal excretion of co-administered substrates and enhance their retention in the kidneys, potentially compromising therapeutic safety.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

    <a href="/en/project/GA17-16169S" target="_blank" >GA17-16169S: In vitro, in situ and ex vivo study of interactions of novel antiviral agents with drug transporters; effect on their passage across the placenta</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS One

  • ISSN

    1932-6203

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000441850400093

  • EID of the result in the Scopus database

    2-s2.0-85053375643