All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ultrastructural and Molecular Analysis of Ribose-Induced Glycated Reconstructed Human Skin

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F18%3A10387812" target="_blank" >RIV/00216208:11160/18:10387812 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.mdpi.com/1422-0067/19/11/3521/htm" target="_blank" >http://www.mdpi.com/1422-0067/19/11/3521/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ijms19113521" target="_blank" >10.3390/ijms19113521</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ultrastructural and Molecular Analysis of Ribose-Induced Glycated Reconstructed Human Skin

  • Original language description

    Aging depicts one of the major challenges in pharmacology owing to its complexity and heterogeneity. Thereby, advanced glycated end-products modify extracellular matrix proteins, but the consequences on the skin barrier function remain heavily understudied. Herein, we utilized transmission electron microscopy for the ultrastructural analysis of ribose-induced glycated reconstructed human skin (RHS). Molecular and functional insights substantiated the ultrastructural characterization and proved the relevance of glycated RHS beyond skin aging. In particular, electron microscopy mapped the accumulation and altered spatial orientation of fibrils and filaments in the dermal compartment of glycated RHS. Moreover, the epidermal basement membrane appeared thicker in glycated than in non-glycated RHS, but electron microscopy identified longitudinal clusters of the finest collagen fibrils instead of real thickening. The stratum granulosum contained more cell layers, the morphology of keratohyalin granules decidedly differed, and the stratum corneum lipid order increased in ribose-induced glycated RHS, while the skin barrier function was almost not affected. In conclusion, dermal advanced glycated end-products markedly changed the epidermal morphology, underlining the importance of matrix-cell interactions. The phenotype of ribose-induced glycated RHS emulated aged skin in the dermis, while the two to three times increased thickness of the stratum granulosum resembled poorer cornification.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Molecular Sciences

  • ISSN

    1422-0067

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000451528500237

  • EID of the result in the Scopus database

    2-s2.0-85056396910