Cyclin-dependent kinase inhibitors AZD5438 and R547 show potential for enhancing efficacy of daunorubicin-based anticancer therapy: Interaction with carbonyl-reducing enzymes and ABC transporters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F19%3A10393437" target="_blank" >RIV/00216208:11160/19:10393437 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3hIqd9b0_o" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3hIqd9b0_o</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bcp.2019.02.035" target="_blank" >10.1016/j.bcp.2019.02.035</a>
Alternative languages
Result language
angličtina
Original language name
Cyclin-dependent kinase inhibitors AZD5438 and R547 show potential for enhancing efficacy of daunorubicin-based anticancer therapy: Interaction with carbonyl-reducing enzymes and ABC transporters
Original language description
Daunorubicin (DAUN) has served as an anticancer drug in chemotherapy regimens for decades and is still irreplaceable in treatment of acute leukemias. The therapeutic outcome of DAUN-based therapy is compromised by its cardiotoxicity and emergence of drug resistance. This phenomenon is often caused by pharmacokinetic mechanisms such as efflux of DAUN from cancer cells through ATP-binding cassette (ABC) transporters and its conversion to less cytostatic but more cardiotoxic daunorubicinol (DAUN-OL) by carbonyl reducing enzymes (CREs). Here we aimed to investigate, whether two cyclin-dependent kinase inhibitors, AZD5438 and R547, can interact with these pharmacokinetic mechanisms and reverse DAUN resistance. Using accumulation assays, we revealed AZD5438 as potent inhibitor of ABCC1 showing also weaker inhibitory effect to ABCB1 and ABCG2. Combination index analysis, however, shown that inhibition of ABCC1 does not significantly contribute to synergism between AZD5438 and DAUN in MDCKII-ABCC1 cells, suggesting predominant role of other mechanism. Using pure recombinant enzymes, we found both tested drugs to inhibit CREs with aldo-keto reductase 1C3 (AKR1C3). This interaction was further confirmed in transfected HCT-116 cells. Moreover, these cells were sensitized to DAUN by both compounds as Chou-Talalay combination index analysis showed synergism in AKR1C3 transfected HCT-116, but not in empty vector transfected control cell line. In conclusion, we propose AZD5438 and R547 as modulators of DAUN resistance that can prevent AKR1C3-mediated DAUN biotransformation to DAUN-OL. This interaction could be beneficially exploited to prevent failure of DAUN-based therapy as well as the undesirable cardiotoxic effect of DAUN-OL.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30104 - Pharmacology and pharmacy
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Biochemical Pharmacology
ISSN
0006-2952
e-ISSN
—
Volume of the periodical
163
Issue of the periodical within the volume
May
Country of publishing house
US - UNITED STATES
Number of pages
9
Pages from-to
290-298
UT code for WoS article
000466060000028
EID of the result in the Scopus database
2-s2.0-85062424154