All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Novel SPME fibers based on a plastic support for determination of plasma protein binding of thiosemicarbazone metal chelators: a case example of DpC, an anti-cancer drug that entered clinical trials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F19%3A10400732" target="_blank" >RIV/00216208:11160/19:10400732 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JENL9QF8rs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JENL9QF8rs</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00216-019-01681-w" target="_blank" >10.1007/s00216-019-01681-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Novel SPME fibers based on a plastic support for determination of plasma protein binding of thiosemicarbazone metal chelators: a case example of DpC, an anti-cancer drug that entered clinical trials

  • Original language description

    Solid-phase microextraction (SPME) is an alternative method to dialysis and ultrafiltration for the determination of plasma protein binding (PPB) of drugs. It is particularly advantageous for complicated analytes where standard methods are not applicable. Di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) is a lead compound of novel thiosemicarbazone anti-cancer drugs, which entered clinical trials in 2016. However, this agent exhibited non-specific binding on filtration membranes and had intrinsic chelation activity, which precluded standard PPB methods. In this study, using a simple and fast procedure, we prepared novel SPME fibers for extraction of DpC based on a metal-free, silicon string support, covered with C18 sorbent. Reproducibility of the preparation process was demonstrated by the percent relative standard deviation (RSD) of &lt;= 9.2% of the amount of DpC extracted from PBS by several independently prepared fibers. The SPME procedure was optimized by evaluating extraction and desorption time profiles. Suitability of the optimized protocol was verified by examining reproducibility, linearity, and recovery of DpC extracted from PBS or plasma. All samples extracted by SPME were analyzed using an optimized and validated UHPLC-MS/MS method. The developed procedure was applied to the in vitro determination of PPB of DpC at two clinically relevant concentrations (500 and 1000 ng/mL). These studies showed that DpC is highly bound to plasma proteins (PPB &gt;= 88%) and this did not differ significantly between both concentrations tested. This investigation provides novel data in the applicability of SPME for the determination of PPB of chelators, as well as useful information for the clinical development of DpC.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10406 - Analytical chemistry

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000841" target="_blank" >EF16_019/0000841: Efficiency and safety improvement of current drugs and nutraceuticals: advanced methods - new challenges</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analytical and Bioanalytical Chemistry

  • ISSN

    1618-2642

  • e-ISSN

  • Volume of the periodical

    411

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    2383-2394

  • UT code for WoS article

    000464715500013

  • EID of the result in the Scopus database

    2-s2.0-85062595858