All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Magnesium Phthalocyanines and Tetrapyrazinoporphyrazines: The Influence of a Solvent and a Delivery System on a Dissociation of Central Metal in Acidic Media

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F22%3A10450610" target="_blank" >RIV/00216208:11160/22:10450610 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZS-p67FsDG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZS-p67FsDG</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ph15040409" target="_blank" >10.3390/ph15040409</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Magnesium Phthalocyanines and Tetrapyrazinoporphyrazines: The Influence of a Solvent and a Delivery System on a Dissociation of Central Metal in Acidic Media

  • Original language description

    Magnesium complexes of phthalocyanines (Pcs) and their aza-analogues have a great potential in medical applications or fluorescence detection. They are known to demetallate to metal-free ligands in acidic environments, however, detailed investigation of this process and its possible prevention is lacking. In this work, a conversion of lipophilic and water-soluble magnesium complexes of Pcs and tetrapyrazinoporphyrazines (TPyzPzs) to metal-free ligands was studied in relation to the acidity of the environment (organic solvent, water) including the investigation of the role of delivery systems (microemulsion or liposomes) in improvement in their acido-stability. The mechanism of the demetallation in organic solvents was based on an acidoprotolytic mechanism with the protonation of the azomethine nitrogen as the first step and a subsequent conversion to non-protonated metal-free ligands. In water, the mechanism seemed to be solvoprotolytic without any protonated intermediate. The water-soluble magnesium complexes were stable in a buffer with a physiological pH 7.4 while a time-dependent demetallation was observed in acidic pH. The demetallation was immediate at pH &lt; 2 while the full conversion to metal-free ligand was done within 10 min and 45 min for TPyzPzs at pH 3 and pH 4, respectively. Incorporation of lipophilic magnesium complexes into microemulsion or liposomes substantially decreased the rate of the demetallation with the latter delivery system being much more efficient in the protection from the acidic environment. A comparison of two different macrocyclic cores revealed significantly higher kinetic inertness of magnesium TPyzPz complexes than their Pc analogues.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Pharmaceuticals

  • ISSN

    1424-8247

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    409

  • UT code for WoS article

    000787935000001

  • EID of the result in the Scopus database

    2-s2.0-85128050314