Renewable sorbent dispersive solid phase extraction automated by Lab-In-Syringe using magnetite-functionalized hydrophilic-lipophilic balanced sorbent coupled online to HPLC for determination of surface water contaminants
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F22%3A10450774" target="_blank" >RIV/00216208:11160/22:10450774 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yG-_Bn6jbQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yG-_Bn6jbQ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aca.2022.339874" target="_blank" >10.1016/j.aca.2022.339874</a>
Alternative languages
Result language
angličtina
Original language name
Renewable sorbent dispersive solid phase extraction automated by Lab-In-Syringe using magnetite-functionalized hydrophilic-lipophilic balanced sorbent coupled online to HPLC for determination of surface water contaminants
Original language description
An automated methodology for magnetic dispersive solid phase microextraction integrating bead injection approach for renewable sorbent introduction is presented for the first time and was successfully applied to the enrichment of water contaminants. For this purpose, a simple procedure was developed for the functionalization of commercial SupelTM-Select HLB (Hydrophilic modified styrene polymer) sorbent beads that allowed embedding magnetite nanoparticles (Fe3O4). The sorbent was then used in a dispersive solid phase extraction procedure that was carried out entirely inside the void of an automatic syringe pump following the flow-batch concept of Lab-In-Syringe including automated renewal of the sorbent for each analysis. Mixing processes, sorbent dispersion, and sorbent recovery were enabled by using a strong magnetic stirring bar, fabricated from a 3D printed polypropylene casing and neodymium magnets, inside the syringe. The final extract was submitted to online coupled liquid chromatography with spectrometric detection. System and methodology were applied to determine mebendazole, bisphenol A, benzyl 4-hydroxybenzoate, diclofenac, and triclosan selected as models from different groups of environmental contaminants of current concern. Experimental parameters including extraction and elution times, composition and volume of eluent, and bead recollection were optimized. Required system elements were produced by 3D printing. Enlarging the sample volume by repeated extraction to enhance the sensitivity of the method was studied. Using double extraction from 3.5 mL, limits of detection ranged from 1.2 mu g L-1 to 6.5 mu g L-1 with an RSD (n = 6) value less than 7% for all the analytes at 25 mu g L-1 level. The method was linear in the range of 5-200 mu g L-1 and was successfully implemented for the analysis of surface waters with analyte recoveries ranging from 78.4% to 105.6%.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
<a href="/en/project/EF16_019%2F0000841" target="_blank" >EF16_019/0000841: Efficiency and safety improvement of current drugs and nutraceuticals: advanced methods - new challenges</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Analytica Chimica Acta
ISSN
0003-2670
e-ISSN
1873-4324
Volume of the periodical
1210
Issue of the periodical within the volume
June
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
339874
UT code for WoS article
000805838700006
EID of the result in the Scopus database
2-s2.0-85129111676