Talazoparib Does Not Interact with ABCB1 Transporter or Cytochrome P450s, but Modulates Multidrug Resistance Mediated by ABCC1 and ABCG2: An in Vitro and Ex Vivo Study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F22%3A10450891" target="_blank" >RIV/00216208:11160/22:10450891 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11150/22:10450891 RIV/00179906:_____/22:10450891
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CUC0Ub3jVS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=CUC0Ub3jVS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ijms232214338" target="_blank" >10.3390/ijms232214338</a>
Alternative languages
Result language
angličtina
Original language name
Talazoparib Does Not Interact with ABCB1 Transporter or Cytochrome P450s, but Modulates Multidrug Resistance Mediated by ABCC1 and ABCG2: An in Vitro and Ex Vivo Study
Original language description
Talazoparib (Talzenna) is a novel poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor that is clinically used for the therapy of breast cancer. Furthermore, the drug has shown antitumor activity against different cancer types, including non-small cell lung cancer (NSCLC). In this work, we investigated the possible inhibitory interactions of talazoparib toward selected ATP-binding cassette (ABC) drug efflux transporters and cytochrome P450 biotransformation enzymes (CYPs) and evaluated its position in multidrug resistance (MDR). In accumulation studies, talazoparib interacted with the ABCC1 and ABCG2 transporters, but there were no significant effects on ABCB1. Furthermore, incubation assays revealed a negligible capacity of the tested drug to inhibit clinically relevant CYPs. In in vitro drug combination experiments, talazoparib synergistically reversed daunorubicin and mitoxantrone resistance in cells with ABCC1 and ABCG2 expression, respectively. Importantly, the position of an effective MDR modulator was further confirmed in drug combinations performed in ex vivo NSCLC patients-derived explants, whereas the possible victim role was refuted in comparative proliferation experiments. In addition, talazoparib had no significant effects on the mRNA-level expressions of MDR-related ABC transporters in the MCF-7 cellular model. In summary, our study presents a comprehensive overview on the pharmacokinetic drug-drug interactions (DDI) profile of talazoparib. Moreover, we introduced talazoparib as an efficient MDR antagonist.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30104 - Pharmacology and pharmacy
Result continuities
Project
<a href="/en/project/GJ20-20414Y" target="_blank" >GJ20-20414Y: Study on the role of novel targeted breast and lung anticancer drugs in the phenomenon of pharmacokinetic drug resistance</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Molecular Sciences
ISSN
1422-0067
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
22
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
14338
UT code for WoS article
000887575900001
EID of the result in the Scopus database
2-s2.0-85142764187