All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Effect of 4-Methylcatechol on Platelets in Familial Hypercholesterolemic Patients Treated with Lipid Apheresis and/or Proprotein Convertase Subtilisin Kexin 9 Monoclonal Antibodies

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F23%3A10465849" target="_blank" >RIV/00216208:11160/23:10465849 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11150/23:10465849 RIV/00179906:_____/23:10465849

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=D1xJJk..no" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=D1xJJk..no</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nu15081842" target="_blank" >10.3390/nu15081842</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Effect of 4-Methylcatechol on Platelets in Familial Hypercholesterolemic Patients Treated with Lipid Apheresis and/or Proprotein Convertase Subtilisin Kexin 9 Monoclonal Antibodies

  • Original language description

    Elevated low-density lipoprotein (LDL) cholesterol levels lead to atherosclerosis and platelet hyperaggregability, both of which are known culprits of arterial thrombosis. Normalization of LDL cholesterol in familial hypercholesterolemia (FH) is not an easy task and frequently requires specific treatment, such as regularly performed lipid apheresis and/or novel drugs such as proprotein convertase subtilisin kexin 9 monoclonal antibodies (PCSK9Ab). Moreover, a high resistance rate to the first-line antiplatelet drug acetylsalicylic acid (ASA) stimulated research of novel antiplatelet drugs. 4-methylcatechol (4-MC), a known metabolite of several dietary flavonoids, may be a suitable candidate. The aim of this study was to analyse the antiplatelet effect of 4-MC in FH patients and to compare its impact on two FH treatment modalities via whole-blood impedance aggregometry. When compared to age-matched, generally healthy controls, the antiplatelet effect of 4-MC against collagen-induced aggregation was higher in FH patients. Apheresis itself improved the effect of 4-MC on platelet aggregation and blood from patients treated with this procedure and pretreated with 4-MC had lower platelet aggregability when compared to those solely treated with PCKS9Ab. Although this study had some inherent limitations, e.g., a low number of patients and possible impact of administered drugs, it confirmed the suitability of 4-MC as a promising antiplatelet agent and also demonstrated the effect of 4-MC in patients with a genetic metabolic disease for the first time.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

    <a href="/en/project/NU21-02-00135" target="_blank" >NU21-02-00135: Cardiovascular effects of flavonoid metabolites and the impact of metabolic risk factors</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nutrients

  • ISSN

    2072-6643

  • e-ISSN

    2072-6643

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    1842

  • UT code for WoS article

    000979074300001

  • EID of the result in the Scopus database

    2-s2.0-85156097065