All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mitigating In-Column Artificial Modifications in High-Temperature LC-MS for Bottom-Up Proteomics and Quality Control of Protein Biopharmaceuticals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11160%2F24%3A10488138" target="_blank" >RIV/00216208:11160/24:10488138 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ymq9nYWPrv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ymq9nYWPrv</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.analchem.4c02819" target="_blank" >10.1021/acs.analchem.4c02819</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mitigating In-Column Artificial Modifications in High-Temperature LC-MS for Bottom-Up Proteomics and Quality Control of Protein Biopharmaceuticals

  • Original language description

    Elevating the column temperature is an effective strategy for improving the chromatographic separation of peptides. However, high temperatures induce artificial modifications that compromise the quality of the peptide analysis. Here, we present a novel high-temperature LC-MS method that retains the benefits of a high column temperature while significantly reducing peptide modification and degradation during reversed-phase liquid chromatography. Our approach leverages a short inline trap column maintained at a near-ambient temperature installed upstream of a separation column. The retentivity and dimensions of the trap column were optimized to shorten the residence time of peptides in the heated separation column without compromising the separation performance. This easy-to-implement approach increased peak capacity by 1.4-fold within a 110 min peptide mapping of trastuzumab and provided 10% more peptide identifications in exploratory LC-MS proteomic analyses compared with analyses conducted at 30 degrees C while maintaining the extent of modifications close to the background level. In the peptide mapping of biopharmaceuticals, where in-column modifications can falsely elevate the levels of some critical quality attributes, the method reduced temperature-related artifacts by 66% for N-terminal pyroGlu and 63% for oxidized Met compared to direct injection at 60 degrees C, thus improving reliability in quality control of protein drugs. Our findings represent a promising advancement in LC-MS methodology, providing researchers and industry professionals with a valuable tool for improving the chromatographic separation of peptides while significantly reducing the unwanted modifications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30104 - Pharmacology and pharmacy

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analytical Chemistry

  • ISSN

    0003-2700

  • e-ISSN

    1520-6882

  • Volume of the periodical

    96

  • Issue of the periodical within the volume

    36

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    14531-14540

  • UT code for WoS article

    001300790300001

  • EID of the result in the Scopus database

    2-s2.0-85202749939