The limit lemma in fragments of arithmetic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F03%3A00008261" target="_blank" >RIV/00216208:11210/03:00008261 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The limit lemma in fragments of arithmetic
Original language description
The recursion theoretic limit lemma, saying that each function with a Sigma(n+2) graphs is a limit of certain function with a Delta (n+1) graph, is provable in B Sigma (n+1).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
AA - Philosophy and religion
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA401%2F01%2F0218" target="_blank" >GA401/01/0218: Modal and Many-valued Logics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
—
Volume of the periodical
44
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
4
Pages from-to
565-568
UT code for WoS article
—
EID of the result in the Scopus database
—