On the Independence of Axioms in BL and MTL
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F12%3A10106115" target="_blank" >RIV/00216208:11210/12:10106115 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/12:00370261
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2011.10.018" target="_blank" >http://dx.doi.org/10.1016/j.fss.2011.10.018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2011.10.018" target="_blank" >10.1016/j.fss.2011.10.018</a>
Alternative languages
Result language
angličtina
Original language name
On the Independence of Axioms in BL and MTL
Original language description
We prove that the axiom expressing that the multiplicative conjunction of two formulae implies the first one of them is redundant in the standard Hilbert-style calculi of Hájek's basic logic BL and Esteva and Godo's monoidal t-norm based logic MTL. Thisproof does not use the axiom expressing that multiplicative conjunction is commutative, which is already known to be redundant. Therefore both of these axioms are simultaneously redundant. We also show that all the other axioms are independent of each other.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
197
Issue of the periodical within the volume
Červen
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
7
Pages from-to
123-129
UT code for WoS article
000303631200009
EID of the result in the Scopus database
—