All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Laver-like indestructibility for hypermeasurable cardinals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11210%2F19%3A10385821" target="_blank" >RIV/00216208:11210/19:10385821 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4SLMKwE88w" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4SLMKwE88w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00153-018-0637-0" target="_blank" >10.1007/s00153-018-0637-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Laver-like indestructibility for hypermeasurable cardinals

  • Original language description

    We show that if $kappa$ is $H(mu)$-hypermeasurable for some cardinal $mu$ with $kappa &lt; cf{mu} le mu$ and GCH holds, then we can extend the universe by a cofinality-preserving forcing to obtain a model $V^*$ in which the $H(mu)$-hyper-measurability of $kappa$ is indestructible by the Cohen forcing at $kappa$ of any length up to $mu$ (in particular $kappa$ is $H(mu)$-hypermeasurable in $V^*$). The preservation of hypermeasurability (in contrast to preservation of mere measurability) is useful for subsequent arguments (such as the definition of Radin forcing). The construction of $V^*$ is based on the ideas of Woodin (unpublished) and Cummings for preservation of measurability, but suitably generalised and simplified to achieve a more general result. Unlike the Laver preparation for a supercompact cardinal, our preparation non-trivially increases the value of $2^{kappa^+}$, which is greater or equal to $mu$ in $V^*$ (but $2^kappa =kappa^+$ is still true in $V^*$ if we start with GCH).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF15-34700L" target="_blank" >GF15-34700L: The continuum, forcing and large cardinals</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Archive for Mathematical Logic

  • ISSN

    0933-5846

  • e-ISSN

  • Volume of the periodical

    58

  • Issue of the periodical within the volume

    3-4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    275-287

  • UT code for WoS article

    000463871300002

  • EID of the result in the Scopus database

    2-s2.0-85049143911