Does it pay to follow anomalies research? Machine learning approach with international evidence
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F21%3A10413843" target="_blank" >RIV/00216208:11230/21:10413843 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/21:00533567
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ApKeE8-JY7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ApKeE8-JY7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.finmar.2020.100588" target="_blank" >10.1016/j.finmar.2020.100588</a>
Alternative languages
Result language
angličtina
Original language name
Does it pay to follow anomalies research? Machine learning approach with international evidence
Original language description
We study out-of-sample returns on 153 anomalies in equities documented in the academic literature. We show that machine learning techniques that aggregate all the anomalies into one mispricing signal are profitable around the globe and survive on a liquid universe of stocks. We investigate the value of international evidence for selection of quantitative strategies that outperform out-of-sample. Past performance of quantitative strategies in regions other than the United States does not help to pick out-of-sample winning strategies in the U.S. Past evidence from the U.S., however, captures most of the return predictability outside the U.S.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50201 - Economic Theory
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Financial Markets
ISSN
1386-4181
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
November 2021
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
31
Pages from-to
1-31
UT code for WoS article
000808118800002
EID of the result in the Scopus database
2-s2.0-85089487417