All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Human Induction in Machine Learning: A Survey of the Nexus

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11230%2F21%3A10427320" target="_blank" >RIV/00216208:11230/21:10427320 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.w7ubfb2PK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.w7ubfb2PK</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3444691" target="_blank" >10.1145/3444691</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Human Induction in Machine Learning: A Survey of the Nexus

  • Original language description

    As our epistemic ambitions grow, the common and scientific endeavours are becoming increasingly dependent on Machine Learning (ML). The field rests on a single experimental paradigm, which consists of splitting the available data into a training and testing set and using the latter to measure how well the trained ML model generalises to unseen samples. If the model reaches acceptable accuracy, then an a posteriori contract comes into effect between humans and the model, supposedly allowing its deployment to target environments. Yet the latter part of the contract depends on human inductive predictions or generalisations, which infer a uniformity between the trained ML model and the targets. The article asks how we justify the contract between human and machine learning. It is argued that the justification becomes a pressing issue when we use ML to reach &quot;elsewhere&quot; in space and time or deploy ML models in non-benign environments. The article argues that the only viable version of the contract can be based on optimality (instead of on reliability, which cannot be justified without circularity) and aligns this position with Schurz&apos;s optimality justification. It is shown that when dealing with inaccessible/unstable ground-truths (&quot;elsewhere&quot; and non-benign targets), the optimality justification undergoes a slight change, which should reflect critically on our epistemic ambitions. Therefore, the study of ML robustness should involve not only heuristics that lead to acceptable accuracies on testing sets. The justification of human inductive predictions or generalisations about the uniformity between ML models and targets should be included as well. Without it, the assumptions about inductive risk minimisation in ML are not addressed in full.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50601 - Political science

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ACM Computing Surveys

  • ISSN

    0360-0300

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    1-18

  • UT code for WoS article

    000661130600013

  • EID of the result in the Scopus database

    2-s2.0-85108104372