High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F16%3A10325135" target="_blank" >RIV/00216208:11310/16:10325135 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1039/c6tc01287f" target="_blank" >http://dx.doi.org/10.1039/c6tc01287f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c6tc01287f" target="_blank" >10.1039/c6tc01287f</a>
Alternative languages
Result language
angličtina
Original language name
High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes
Original language description
Searching for two-dimensional (2D) materials with room-temperature magnetic order and high spin-polarization is essential for the development of next-generation nanospintronic devices. A new class of 2D magnetic materials with high Neel temperature, fully compensated antiferromagnetic order (zero magnetization) and completely spin-polarized semiconductivity is proposed for the first time. Based on the density functional theory calculations, we predict these properties for asymmetrically functionalized MXenes (Janus Cr2C) - Cr2CXX' (X, X' = H, F, Cl, Br, OH). The valence and conduction bands in these materials are made up of opposite spin channels and they can behave as bipolar magnetic semiconductors with zero magnetization. A Neel temperature as high as 400 K has been found for Cr2CFCl, Cr2CClBr, Cr2CHCl, Cr2CHF, and Cr2CFOH materials. Remarkably, the spin carrier orientation and induced transition from bipolar magnetic semiconductors to half-metal antiferromagnets can be easily controlled by electron or hole doping. The band gap of Janus MXenes can be effectively tuned by the selection of a pair of chemical elements/functional groups terminating the upper and the lower surfaces. The spin-polarized semiconductivity with zero magnetism is preserved when MXenes are put on the SiC(0001) support. The results presented herein open a new road towards the construction of 2D high-temperature spin-polarized materials with anti-ferromagnetism potentially suitable for spintronic applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CF - Physical chemistry and theoretical chemistry
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP106%2F12%2FG015" target="_blank" >GBP106/12/G015: Intelligent design of nanoporous adsorbents and catalysts</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Materials Chemistry C
ISSN
2050-7526
e-ISSN
—
Volume of the periodical
4
Issue of the periodical within the volume
27
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
6500-6509
UT code for WoS article
000379436900011
EID of the result in the Scopus database
—