Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F16%3A10327704" target="_blank" >RIV/00216208:11310/16:10327704 - isvavai.cz</a>
Alternative codes found
RIV/00027006:_____/16:00003665
Result on the web
<a href="http://dx.doi.org/10.3389/fmich.2015.01046" target="_blank" >http://dx.doi.org/10.3389/fmich.2015.01046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/fmich.2015.01046" target="_blank" >10.3389/fmich.2015.01046</a>
Alternative languages
Result language
angličtina
Original language name
Populations of Stored Product Mite Tyrophagus putrescentiae Differ in Their Bacterial Communities
Original language description
Background: Tyrophagus putrescentiae colonizes different human-related habitats and feeds on various post harvest foods. The microbiota acquired by these mites can influence the nutritional plasticity in different populations. We compared the bacterial communities of five populations of T putrescentiae and one mixed population of T putrescentiae and T fanetzhangorum collected from different habitats. Material: The bacterial communities of the six mite populations from different habitats and diets were compared by Sanger sequencing of cloned 16S rRNA obtained from amplification with universal eubacterial primers and using bacterial taxon-specific primers on the samples of adults/juveniles or eggs. Microscopic techniques were used to localize bacteria in food boli and mite bodies. The morphological determination of the mite populations was confirmed by analyses of CO1 and ITS fragment genes. Results: The following symbiotic bacteria were found in compared mite populations: Wolbachia (two populations), Cardiniurn (five populations), Bartonella-like (five populations), Blattabacteriurn-like symbiont (three populations), and Solitalea-like (six populations). From 35 identified OTUs97, only Solitalea was identified in all populations. The next most frequent and abundant sequences were Bacillus, Moraxella, Staphylococcus, Kocuria, and Microbacteriurn. We suggest that some bacterial species may occasionally be ingested with food. The bacteriocytes were observed in some individuals in all mite populations. Bacteria were not visualized in food boli by staining, but bacteria were found by histological means in ovaria of Wolbachia infested populations. Conclusion: The presence of Blattabacterium-like, Cardinium, Wolbachia, and Solitalea like in the eggs of T putrescentiae indicates mother to offspring (vertical) transmission. Results of this study indicate that diet and habitats influence not only the ingested bacteria but also the symbiotic bacteria of T putrescentiae.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
GF - Diseases, pests, weeds and plant protection
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-09038S" target="_blank" >GA15-09038S: Do the associated bacteria help to astigmatic mite Tyrophagus putrescentiae to successful colonization of human made habitats?</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Microbiology
ISSN
1664-302X
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
JUL
Country of publishing house
CH - SWITZERLAND
Number of pages
19
Pages from-to
—
UT code for WoS article
000379465900001
EID of the result in the Scopus database
2-s2.0-84983084906