All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F16%3A10327832" target="_blank" >RIV/00216208:11310/16:10327832 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1186/s12864-016-2666-6" target="_blank" >http://dx.doi.org/10.1186/s12864-016-2666-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12864-016-2666-6" target="_blank" >10.1186/s12864-016-2666-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton

  • Original language description

    In this study, we aimed at characterizing the mechanisms of iron assimilation in O. tauri by combining genetics and physiological tools. Specifically, we wanted to identify and functionally characterize groups of genes displaying tightly orchestrated temporal expression patterns following the exposure of cells to iron deprivation and day/night cycles, and to highlight unique features of iron metabolism in O. tauri, as compared to the freshwater model alga Chalamydomonas reinhardtii. Results: We used RNA sequencing to investigated the transcriptional responses to iron limitation in O. tauri and found that most of the genes involved in iron uptake and metabolism in O. tauri are regulated by day/night cycles, regardless of iron status. O. tauri lacks the classical components of a reductive iron uptake system, and has no obvious iron regulon. Iron uptake appears to be copper-independent, but is regulated by zinc. Conversely, iron deprivation resulted in the transcriptional activation of numerous genes encoding zinc-containing regulation factors. Iron uptake is likely mediated by a ZIP-family protein (Ot-Irt1) and by a new Fea1-related protein (Ot-Fea1) containing duplicated Fea1 domains. The adaptation of cells to iron limitation involved an iron-sparing response tightly coordinated with diurnal cycles to optimize cell functions and synchronize these functions with the day/night redistribution of iron orchestrated by ferritin, and a stress response based on the induction of thioredoxin-like proteins, of peroxiredoxin and of tesmin-like methallothionein rather than ascorbate. We briefly surveyed the metabolic remodeling resulting from iron deprivation. Conclusions: The mechanisms of iron uptake and utilization by O. tauri differ fundamentally from those described in C. reinhardtii. We propose this species as a new model for investigation of iron metabolism in marine microalgae.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    EH - Ecology - communities

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    BMC Genomics

  • ISSN

    1471-2164

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    MAY 3 2016

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    23

  • Pages from-to

  • UT code for WoS article

    000375976600001

  • EID of the result in the Scopus database

    2-s2.0-84964700530