All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Potential Activity of Subglacial Microbiota Transported to Anoxic River Delta Sediments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F17%3A10360625" target="_blank" >RIV/00216208:11310/17:10360625 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00248-016-0926-2" target="_blank" >http://dx.doi.org/10.1007/s00248-016-0926-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00248-016-0926-2" target="_blank" >10.1007/s00248-016-0926-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Potential Activity of Subglacial Microbiota Transported to Anoxic River Delta Sediments

  • Original language description

    The Watson River drains a portion of the SW Greenland ice sheet, transporting microbial communities from subglacial environments to a delta at the head of Sondre Stromfjord. This study investigates the potential activity and community shifts of glacial microbiota deposited and buried under layers of sediments within the river delta. A long-term (12-month) incubation experiment was established using Watson River delta sediment under anaerobic conditions, with and without CO2/H-2 enrichment. Within CO2/H-2-amended incubations, sulphate depletion and a shift in the microbial community to a 52% predominance of Desulfosporosinus meridiei by day 371 provides evidence for sulphate reduction. We found evidence of methanogenesis in CO2/H-2-amended incubations within the first 5 months, with production rates of similar to 4 pmol g(-1) d(-1), which was likely performed by methanogenic Methanomicrobiales-and Methanosarcinales-related organisms. Later, a reduction in methane was observed to be paired with the depletion of sulphate, and we hypothesise that sulphate reduction out competed hydrogenotrophic methanogenesis. The structure and diversity of the original CO2/H-2-amended incubation communities changed dramatically with a major shift in predominant community members and a decline in diversity and cell abundance. These results highlight the need for further investigations into the fate of subglacial microbiota within downstream environments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10618 - Ecology

Result continuities

  • Project

    <a href="/en/project/GJ15-17346Y" target="_blank" >GJ15-17346Y: The bright future of subglacial ecosystems: Impacts of deglaciation on microbial activity and carbon cycling at glacier beds</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Microbial Ecology

  • ISSN

    0095-3628

  • e-ISSN

  • Volume of the periodical

    74

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    4

  • Pages from-to

    6-9

  • UT code for WoS article

    000403255500002

  • EID of the result in the Scopus database

    2-s2.0-85008698564