All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classification of Tundra Vegetation in the Krkonose Mts. National Park Using APEX, AISA Dual and Sentinel-2A Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F17%3A10361541" target="_blank" >RIV/00216208:11310/17:10361541 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1080/22797254.2017.1274573" target="_blank" >http://dx.doi.org/10.1080/22797254.2017.1274573</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/22797254.2017.1274573" target="_blank" >10.1080/22797254.2017.1274573</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classification of Tundra Vegetation in the Krkonose Mts. National Park Using APEX, AISA Dual and Sentinel-2A Data

  • Original language description

    The aim of this study was to evaluate and compare suitability of aerial hyperspectral data (AISA Dual and APEX sensors) and Sentinel-2A data for classification of tundra vegetation cover in the Krkonose Mts. National Park. We compared classification results (accuracy, maps) of pixel-based (Maximum Likelihood, Suport Vector Machine and Neural Net) and object-based approaches. The best classification results (overall accuracy 84.3%, Kappa coefficient = 0.81) were achieved for AISA Dual data using per-pixel SVM classifier for 40 PCA bands. The best classification results of APEX though were only 1.7 percentage points lower. To get comparable results for Sentinel-2A classification legend had to be simplified. With the simplified legend the accuracy using MLC classifier reached 77.7%.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

    <a href="/en/project/LO1417" target="_blank" >LO1417: Centre of Experimental Plant Biology of CU</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Europen Journal of Remote Sensing [online]

  • ISSN

    2279-7254

  • e-ISSN

  • Volume of the periodical

    50

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    IT - ITALY

  • Number of pages

    18

  • Pages from-to

    29-46

  • UT code for WoS article

    000405204300003

  • EID of the result in the Scopus database