Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F17%3A10361542" target="_blank" >RIV/00216208:11310/17:10361542 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1093/aob/mcx047" target="_blank" >http://dx.doi.org/10.1093/aob/mcx047</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/aob/mcx047" target="_blank" >10.1093/aob/mcx047</a>
Alternative languages
Result language
angličtina
Original language name
Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors
Original language description
Background and Aims Root absorptive characteristics rely on the presence of apoplastic barriers. However, little is known about the establishment of these barriers within a complex root system, particularly in a major portion of them - the lateral roots. In Zea mays L., the exodermis differentiates under the influence of growth conditions. Therefore, the species presents a suitable model to elucidate the cross-talk among environmental conditions, branching pattern and the maturation of barriers within a complex root system involved in the definition of the plant-soil interface. The study describes the extent to which lateral roots differentiate apoplastic barriers in response to changeable environmental conditions. Methods The branching, permeability of the outer cell layers and differentiation of the endo-and exodermis were studied in primary roots and various laterals under different types of stress of agronomic importance (salinity, heavy metal toxicity, hypoxia, etc.). Histochemical methods, image analysis and apoplastic tracer assays were utilized. Key Results The results show that the impact of growth conditions on the differentiation of both the endodermis and exodermis is modulated according to the type/diameter of the root. Fine laterals clearly represent that portion of a complex root system with a less advanced state of barrier differentiation, but with substantial ability to modify exodermis differentiation in response to environmental conditions. In addition, some degree of autonomy in exodermal establishment of Casparian bands (CBs) vs. suberin lamellae (SLs) was observed, as the absence of lignified exodermal CBs did not always fit with the lack of SLs. Conclusions This study highlights the importance of lateral roots, and provides a first look into the developmental variations of apoplastic barriers within a complex root system. It emphasizes that branching and differentiation of barriers in fine laterals may substantially modulate the root system-rhizosphere interaction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
<a href="/en/project/LO1417" target="_blank" >LO1417: Centre of Experimental Plant Biology of CU</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Botany
ISSN
0305-7364
e-ISSN
—
Volume of the periodical
120
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
71-85
UT code for WoS article
000405410900012
EID of the result in the Scopus database
2-s2.0-85026324612