All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prediction of Swelling Pressure of Compacted Bentonite with Respect to Void Ratio Based on Diffuse Double Layer Theory

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F17%3A10372484" target="_blank" >RIV/00216208:11310/17:10372484 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prediction of Swelling Pressure of Compacted Bentonite with Respect to Void Ratio Based on Diffuse Double Layer Theory

  • Original language description

    Compacted bentonite was chosen as the buffer and backfill material in high level nuclear waste disposal due to its high swelling pressure and low permeability. The estimation of swelling pressure is essential in design and construct the nuclear repositories. The swelling pressure model of compacted bentonite has been developed by former researchers based on Gouy-Chapman diffuse double layer theory. It is effective in predicting low swelling pressure (low compaction dry density), while it is invalidated in simulating high swelling pressure (high compaction dry density). Based on the published literature data of MX80 bentonite, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, is established. The new relationship is based on the Gouy-chapman theory by considering the variation of void ratio. The proposed equations are applied to compute swelling pressure of other bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, FoCa bentonite and GMZ bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů