All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Human antibody reaction against recombinant salivary proteins of Phlebotomus orientalis in Eastern Africa

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F18%3A10388003" target="_blank" >RIV/00216208:11310/18:10388003 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1371/journal.pntd.0006981" target="_blank" >https://doi.org/10.1371/journal.pntd.0006981</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pntd.0006981" target="_blank" >10.1371/journal.pntd.0006981</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Human antibody reaction against recombinant salivary proteins of Phlebotomus orientalis in Eastern Africa

  • Original language description

    Background Phlebotomus orientalis is a vector of Leishmania donovani, the causative agent of life threatening visceral leishmaniasis spread in Eastern Africa. During blood-feeding, sand fly females salivate into the skin of the host. Sand fly saliva contains a large variety of proteins, some of which elicit specific antibody responses in the bitten hosts. To evaluate the exposure to sand fly bites in human populations from disease endemic areas, we tested the antibody reactions of volunteers&apos; sera against recombinant P. orientalis salivary antigens. Methodology/Principal findings Recombinant proteins derived from sequence data on P. orientalis secreted salivary proteins, were produced using either bacterial (five proteins) or mammalian (four proteins) expression systems and tested as antigens applicable for detection of anti-P. orientalis IgG in human sera. Using these recombinant proteins, human sera from Sudan and Ethiopia, countries endemic for visceral leishmaniasis, were screened by ELISA and immunoblotting to identify the potential markers of exposure to P. orientalis bites. Two recombinant proteins; mAG5 and mYEL1, were identified as the most promising antigens showing high correlation coefficients as well as good specificity in comparison to the whole sand fly salivary gland homogenate. Combination of both proteins led to a further increase of correlation coefficients as well as both positive and negative predictive values of P. orientalis exposure. Conclusions/Significance This is the first report of screening human sera for anti-P. orientalis antibodies using recombinant salivary proteins. The recombinant salivary proteins mYEL1 and mAG5 proved to be valid antigens for screening human sera from both Sudan and Ethiopia for exposure to P. orientalis bites. The utilization of equal amounts of these two proteins significantly increased the capability to detect anti-P. orientalis antibody responses.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10600 - Biological sciences

Result continuities

  • Project

    <a href="/en/project/GA17-10308S" target="_blank" >GA17-10308S: Salivary proteins of Sergentomyia schwetzi sand flies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS Neglected Tropical Diseases [online]

  • ISSN

    1935-2735

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

  • UT code for WoS article

    000455103100024

  • EID of the result in the Scopus database

    2-s2.0-85058873445