All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modelling the role of material depletion, grain coarsening and revegetation in debris flow occurrences after the 2008 Wenchuan earthquake

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F19%3A10389060" target="_blank" >RIV/00216208:11310/19:10389060 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=U.bdrv_ewQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=U.bdrv_ewQ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.enggeo.2019.01.010" target="_blank" >10.1016/j.enggeo.2019.01.010</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modelling the role of material depletion, grain coarsening and revegetation in debris flow occurrences after the 2008 Wenchuan earthquake

  • Original language description

    A large amount of debris was generated by the co-seismic mass wasting associated with the 2008 Mw 7.9 Wenchuan earthquake. The abundance of this loose material along the slopes caused more frequent debris flows, triggered by less intense and/or shorter rainfalls. However, both the triggering rainfall and the debris flow frequency seem to have normalised progressively during the past decade. Although changes of rainfall thresholds for post-seismic debris flows were recorded after several major earthquakes, the factors controlling these changes remain poorly constrained. With the aid of a virtual experiment, we investigate the roles of material depletion, grain coarsening and revegetation of the co-seismic debris on the propagation and deposition of debris flows initiated by runoff, as well as their influence on the triggering rainfall thresholds. We employ a Geographic Information System (GIS)-based simulation of debris flow initiation by runoff erosion, which we first calibrate on the 14th August 2010 Hongchun gully event that occurred near the Wenchuan earthquake epicentre. We obtain, by investigating each of the aforementioned processes, changing critical rainfall intensity-duration thresholds for given debris flow runout distances. Grain coarsening appears to play a major role, which is consistent with published laboratory experiments, while material depletion and revegetation do not seem able to account alone for the actual quick decay of debris flow frequency. While the virtual experiment has proven useful in identifying the first-order controls on this decay, model improvements and verification over multiple catchments are needed to make the results useful in hazard assessments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

  • Continuities

    O - Projekt operacniho programu

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Engineering Geology

  • ISSN

    0013-7952

  • e-ISSN

  • Volume of the periodical

    250

  • Issue of the periodical within the volume

    February

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    34-44

  • UT code for WoS article

    000461404500004

  • EID of the result in the Scopus database

    2-s2.0-85060340204