All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pore size effect on the separation of polymers by interaction chromatography. A Monte Carlo study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F19%3A10402997" target="_blank" >RIV/00216208:11310/19:10402997 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1r3.rHyp-z" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=1r3.rHyp-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aca.2019.03.017" target="_blank" >10.1016/j.aca.2019.03.017</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pore size effect on the separation of polymers by interaction chromatography. A Monte Carlo study

  • Original language description

    When the polymers are studied by interaction chromatography (IC) in porous media, the IC separation mechanism competes with the size-exclusion chromatography (SEC) mechanism and under specific conditions close to the critical adsorption point (CAP), the elution times of monodisperse polymer samples nonmonotonically depend on pore sizes. We performed Monte Carlo (MC) simulations to elucidate this intriguing effect. By analyzing the behavior of self-avoiding and intersecting chains in twodimensionally (2D)-confining square pores and in 1D-confining slits in good and Theta-solvents, we confirmed that the dimensionality of the confinement, more specifically, pore geometry, controls the chromatographic behavior. The nonmonotonic dependence of chromatographic characteristics on pore sizes occurs only in separations of self-avoiding chains on stationary phases composed of 2D-confining pores with strongly interacting walls. In agreement with experimental observations, the partition coefficient, K, increases with pore size, D, in narrow pores, peaks and then decreases in wider pores. The combination of thermodynamic and conformational analyses clearly showed that a complex interplay between enthalpy and entropy in 2D-confined media explains the nonmonotonic pore size dependence observed in the IC regime. The study specifies the region of conditions which endanger unambiguous interpretation of elution curves. Because the interplay of steric and adsorption effects takes place not only in chromatography, but also in other separation techniques (e.g., gel electrophoresis, nanofluidic techniques), the conclusions are generally relevant for all separations of large molecules in porous media.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GC17-04258J" target="_blank" >GC17-04258J: Multidimensional distributions in branched and graft copolymers</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analytica Chimica Acta

  • ISSN

    0003-2670

  • e-ISSN

  • Volume of the periodical

    1064

  • Issue of the periodical within the volume

    August

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    126-137

  • UT code for WoS article

    000464123500013

  • EID of the result in the Scopus database

    2-s2.0-85062946497