All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neighborhood features in geospatial machine learning: the case of population disaggregation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10397272" target="_blank" >RIV/00216208:11310/20:10397272 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=83qHDVcvdZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=83qHDVcvdZ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/15230406.2019.1618201" target="_blank" >10.1080/15230406.2019.1618201</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neighborhood features in geospatial machine learning: the case of population disaggregation

  • Original language description

    High-resolution population density data are crucial for advanced geographical analysis but are difficult to obtain owing to personal data protection. This paper presents a method to obtain these data through spatial disaggregation of aggregate data using random forests. Ancillary topographic data are used from open data sources, namely OpenStreetMap, Urban Atlas, and the NASA Shuttle Radar Topography Mission (SRTM). An attempt to increase disaggregation accuracy is made through a systematic conceptualization of proximity, neighborhood features. The method is implemented as a toolbox for Python and PostGIS and is tested on three cities in Central and Eastern Europe: Prague, Maribor, and Tallinn. It is shown that this approach produces more accurate predictions than other comparable approaches.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Cartography and Geographic Information Science

  • ISSN

    1523-0406

  • e-ISSN

  • Volume of the periodical

    47

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    79-94

  • UT code for WoS article

    000474044200001

  • EID of the result in the Scopus database

    2-s2.0-85068501817