On Multiple Solutions to the Steady Flow of Incompressible Fluids Subject to Do-nothing or Constant Traction Boundary Conditions on Artificial Boundaries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10406427" target="_blank" >RIV/00216208:11310/20:10406427 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/20:10406427
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Eg27N.z1KV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Eg27N.z1KV</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-019-0472-z" target="_blank" >10.1007/s00021-019-0472-z</a>
Alternative languages
Result language
angličtina
Original language name
On Multiple Solutions to the Steady Flow of Incompressible Fluids Subject to Do-nothing or Constant Traction Boundary Conditions on Artificial Boundaries
Original language description
The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to establish the standard energy estimates. In a pursuit to understand better the possible consequences of using these conditions, we present a particular set of examples of flow problems, where we find none or two analytical or numerical solutions. Namely, we consider problems where the flow connects two such artificial boundaries. In the simple case of the isotropic radial flows where both steady and unsteady analytical solutions are derived easily, we demonstrate that while for some (large) boundary data all unsteady solutions blow up in finite time, for other data (including small or trivial) the unsteady flows either converge asymptotically to one of two steady solutions, or blow up in finite time, depending on the initial state. We then document the very same behavior of the numerical solutions for planar flow in a diverging channel. Finally, we provide an illustrative example of two steady numerical solutions to the flow in a three-dimensional bifurcating tube, where the inflow velocity is prescribed at the inlet, while the two outlets are treated by the do-nothing boundary condition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
—
UT code for WoS article
000515533600008
EID of the result in the Scopus database
2-s2.0-85077028491