The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) Green Algae are Genetically and Morphologically Diverse and Exhibit Effective Accumulation of Polyphosphate
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10408867" target="_blank" >RIV/00216208:11310/20:10408867 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/20:10408867
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=16lwurdElL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=16lwurdElL</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/jpy.12931" target="_blank" >10.1111/jpy.12931</a>
Alternative languages
Result language
angličtina
Original language name
The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) Green Algae are Genetically and Morphologically Diverse and Exhibit Effective Accumulation of Polyphosphate
Original language description
The green algal genus Cylindrocystis is widespread in various types of environments, including extreme habitats. However, very little is known about its diversity, especially in polar regions. In the present study, we isolated seven new Cylindrocystis-like strains from terrestrial and freshwater habitats in Svalbard (High Arctic). We aimed to compare the new isolates on a molecular (rbcL and 18S rDNA), morphological (light and confocal laser scanning microscopy), and cytological (Raman microscopy) basis. Our results demonstrated that the Arctic Cylindrocystis were not of a monophyletic origin and that the studied strains clustered within two clades (tentatively named the soil and freshwater/glacier clades) and four separate lineages. Morphological data (cell size, shape, and chloroplast morphology) supported the presence of several distinct taxa among the new isolates. Moreover, the results showed that the Arctic Cylindrocystis strains were closely related to strains originating from the temperate zone, indicating high ecological versatility and successful long-distance dispersal of the genus. Large amounts of inorganic polyphosphate (polyP) grains were detected within the chloroplasts of the cultured Arctic Cylindrocystis strains, suggesting effective luxury uptake of phosphorus. Additionally, various intracellular structures were identified using Raman microscopy and cytochemical and fluorescent staining. This study represents the first attempt to combine molecular, morphological, ecological, and biogeographical data for Arctic Cylindrocystis. Our novel cytological observations partially explain the success of Cylindrocystis-like microalgae in polar regions. (C) 2019 Phycological Society of America
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Phycology
ISSN
0022-3646
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
217-232
UT code for WoS article
000513298800019
EID of the result in the Scopus database
2-s2.0-85075444178