All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Field Dependence of Magnetic Disorder in Nanoparticles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10413884" target="_blank" >RIV/00216208:11310/20:10413884 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=t9v4VBGDjw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=t9v4VBGDjw</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevX.10.031019" target="_blank" >10.1103/PhysRevX.10.031019</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Field Dependence of Magnetic Disorder in Nanoparticles

  • Original language description

    The performance characteristics of magnetic nanoparticles toward application, e.g., in medicine and imaging or as sensors, are directly determined by their magnetization relaxation and total magnetic moment. In the commonly assumed picture, nanoparticles have a constant overall magnetic moment originating from the magnetization of the single-domain particle core surrounded by a surface region hosting spin disorder. In contrast, this work demonstrates the significant increase of the magnetic moment of ferrite nanoparticles with an applied magnetic field. At low magnetic field, the homogeneously magnetized particle core initially coincides in size with the structurally coherent grain of 12.8(2) nm diameter, indicating a strong coupling between magnetic and structural disorder. Applied magnetic fields gradually polarize the uncorrelated, disordered surface spins, resulting in a magnetic volume more than 20% larger than the structurally coherent core. The intraparticle magnetic disorder energy increases sharply toward the defect-rich surface as established by the field dependence of the magnetization distribution. In consequence, these findings illustrate how the nanoparticle magnetization overcomes structural surface disorder. This new concept of intraparticle magnetization is deployable to other magnetic nanoparticle systems, where the in-depth knowledge of spin disorder and associated magnetic anisotropies are decisive for a rational nanomaterials design.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review X

  • ISSN

    2160-3308

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    031019

  • UT code for WoS article

    000552226600001

  • EID of the result in the Scopus database

    2-s2.0-85090570892