All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Impact of clinically acquired miltefosine resistance by Leishmania infantum on mouse and sand fly infection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10416689" target="_blank" >RIV/00216208:11310/20:10416689 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Xjbho57AGg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Xjbho57AGg</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijpddr.2020.04.004" target="_blank" >10.1016/j.ijpddr.2020.04.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Impact of clinically acquired miltefosine resistance by Leishmania infantum on mouse and sand fly infection

  • Original language description

    Objectives: This study evaluated the implications of clinically acquired miltefosine resistance (MIL-R) by assessing virulence in mice and sand flies to reveal the potential of MIL-R strains to circulate. Methods: Experimental infections with the MIL-R clinical Leishmania infantum isolate MHOM/FR/2005/LEM5159, having a defect in the LiROS3 subunit of the MIL-transporter, and its syngeneic experimentally reconstituted MIL-S counterpart (LEM5159(LiROS3)) were performed in BALB/c mice and Lutzomyia longipalpis and Phlebotomus perniciosus sand flies. In mice, the amastigote burdens in liver and spleen were compared microscopically using Giemsa smears and by bioluminescent imaging. During the sand fly infections, the percentage of infected flies, parasite load, colonization of the stomodeal valve and metacyclogenesis were evaluated. The stability of the MIL-R phenotype after sand fly and mouse passage was determined as well. Results: The fitness of the MIL-R strain differed between the mouse and sand fly infection model. In mice, a clear fitness loss was observed compared to the LiROS3-reconstituted susceptible strain. This defect could be rescued by episomal reconstitution with a wildtype LiROS3 copy. However, this fitness loss was not apparent in the sand fly vector, resulting in metacyclogenesis and efficient colonization of the stomodeal valve. Resistance was stable after passage in both sand fly and mouse. Conclusion: The natural MIL-R strain is significantly hampered in its ability to multiply and cause a typical visceral infection pattern in BALB/c mice. However, this LiROS3-deficient strain efficiently produced mature infections and metacyclic promastigotes in the sand fly vector highlighting the transmission potential of this particular MIL-R clinical Leishmania strain.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10600 - Biological sciences

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal for Parasitology: Drugs and Drug Resistance [online]

  • ISSN

    2211-3207

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    AUG 2020

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    6

  • Pages from-to

    16-21

  • UT code for WoS article

    000556674900003

  • EID of the result in the Scopus database

    2-s2.0-85084240310