All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Landscape-scale variability of air and soil temperature related to tree growth in the treeline ecotone

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10416978" target="_blank" >RIV/00216208:11310/20:10416978 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GtxdmEecXV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GtxdmEecXV</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00035-020-00233-8" target="_blank" >10.1007/s00035-020-00233-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Landscape-scale variability of air and soil temperature related to tree growth in the treeline ecotone

  • Original language description

    Treeline isotherms are used in comparative and modelling studies to predict treeline positions. However, how representative local short-term temperature records are for a given region remains poorly understood. Furthermore, the predictive value of on-site temperatures for explaining tree growth requires further validation. Here we present temperature records and tree growth datasets from treeline ecotone sites differing in elevation and slope direction in the High Sudetes (Czechia and Poland). The goal was to determine the spatial and temporal variability of soil and air temperatures and to describe the relationship of various temperature metrics with tree growth. Our results demonstrate that, because of spatial and temporal variability, major temperature metrics used in comparative studies should be provided with an uncertainty range between 0.6 and 0.8 K for seasonal mean soil and air temperature. While soil temperatures exhibit high spatial variability, air temperatures vary more with time. Elevation is the most important driver of temperature patterns in treeline ecotones. Differences related to slope direction were important mainly for soil temperatures in lower parts of treeline ecotones. Tree growth is tightly related to June-September air temperature, with a modulating role of the onset date of soil temperature-defined growing season. In this study, we describe patterns of temperature variation in the treeline ecotones of two mountain ranges and demonstrate the extremely strong dependence of tree stem growth on air temperature, with very limited remaining space for other potentially limiting factors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Alpine Botany

  • ISSN

    1664-2201

  • e-ISSN

  • Volume of the periodical

    130

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    75-87

  • UT code for WoS article

    000519412700001

  • EID of the result in the Scopus database

    2-s2.0-85081694759