All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Which Aspects of Hydrological Regime in Mid-Latitude Montane Basins Are Affected by Climate Change?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10417137" target="_blank" >RIV/00216208:11310/20:10417137 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BwtK4Dc~YK" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=BwtK4Dc~YK</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/w12082279" target="_blank" >10.3390/w12082279</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Which Aspects of Hydrological Regime in Mid-Latitude Montane Basins Are Affected by Climate Change?

  • Original language description

    This study analyzed the long-term alterations in runoff regime, seasonality and variability in headwater montane basins in Central Europe in response to the manifestations of climate change. We tested the common hypotheses on climate change effects on surface runoff dynamics in the Central Europe region, assuming that (i) recent climate warming will result in shifts in the seasonality of runoff, (ii) the runoff balance will remain without significant changes and (iii) that higher variability in runoff can be expected. The analyses were done on eight montane catchments in four mid-latitude mountain ranges in Central Europe, based on the uninterrupted time series of daily discharge observations from 1952 to 2018. We used 33 indicators of hydrologic alteration (IHA), 34 indicators of environmental flow components, the baseflow index, the calculation of surplus and deficit volumes and the frequency of peak and low flows. Homogeneity testing using Buishand, Pettitt and SNHT tests was applied to test the response of the hydrological alteration indicators to climate warming. We have proved the significant shifts in runoff seasonality, coinciding with the timing of the air temperature rise, marked by earlier snowmelt, followed by a decline in spring flows and a prolonged period of low flows. There was detected a rise in the baseflow index across the mountain ranges. Unlike the common hypotheses, the expected rise of runoff variability and frequency of peak flows was not demonstrated. However, we have identified a significant change of the flood hydrographs, tending to steeper shape with shorter recessing limbs as a sign of rising inner dynamics of flood events in montane catchments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

    <a href="/en/project/GA19-05011S" target="_blank" >GA19-05011S: Spatial and temporal dynamics of hydrometeorological extremes in montane areas</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Water

  • ISSN

    2073-4441

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    22

  • Pages from-to

    2279

  • UT code for WoS article

    000564752800001

  • EID of the result in the Scopus database

    2-s2.0-85090215712