All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Amphibole growth from a primitive alkaline basalt at 0.8 GPa: Time-dependent compositional evolution, growth rate and competition with clinopyroxene

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10424784" target="_blank" >RIV/00216208:11310/20:10424784 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pq_7bLQ1p" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=pq_7bLQ1p</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.lithos.2019.105272" target="_blank" >10.1016/j.lithos.2019.105272</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Amphibole growth from a primitive alkaline basalt at 0.8 GPa: Time-dependent compositional evolution, growth rate and competition with clinopyroxene

  • Original language description

    Amphibole growth rates were experimentally determined at hydrous (3.3-4.2 wt% H2O), isobaric (0.8 GPa) conditions, variable temperature (1030 and 1080 degrees C) and dwell time (0.25, 3, 6, and 9 h), using as starting material a primitive alkaline basalt from Procida island (Campi Flegrei Volcanic District, south Italy). Amphibole growth rates decrease from 1.5.10(-7) to 2.9.10(-8) cm s(-1) as the duration of the experiments increase from 0.25 to 9 h. Moreover, increasing both temperature and water content leads to similar growth rate increase at constant dwell time. The comparison between amphibole and clinopyroxene growth rates determined at the same experimental conditions reveals for amphibole a faster growth relatively to the coexisting clinopyroxene, regardless of the dwell time. Furthermore, the experimental time appears to be a critical parameter for the composition of synthetic amphiboles; specifically, edenite is the dominant composition in short experiments (&lt;= 3 h), particularly, at low temperature (1030 degrees C), whereas the magnesiohastingsitic amphibole becomes progressively more important shifting towards longer duration and higher temperature run conditions. The magnesiohastingsite, on the basis of the amphibole-liquid Fe-Mg exchange coefficient values, results to be the compositional term representative of amphibole-melt equilibrium at the investigated P-T-H2O conditions. Finally, experimental growth rates from this study have been used to investigate the crystallization time of natural amphiboles and clinopyroxenes from the Oligo-Miocene cumulates of north-western Sardinia (i.e. Capo Marargiu Volcanic District, Italy), yielding crystallization times of 1.46-3.12 yr. (C) 2019 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    <a href="/en/project/GA18-01982S" target="_blank" >GA18-01982S: Experimental determination of the effect of oxygen fugacity on mineral/melt partitioning for the Highly Siderophile Elements at mantle conditions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lithos

  • ISSN

    0024-4937

  • e-ISSN

  • Volume of the periodical

    354

  • Issue of the periodical within the volume

    Feb 2020

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    105272

  • UT code for WoS article

    000514217200021

  • EID of the result in the Scopus database

    2-s2.0-85076597519