All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Leaf Age Matters in Remote Sensing: Taking Ground Truth for Spectroscopic Studies in Hemiboreal Deciduous Trees with Continuous Leaf Formation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10431560" target="_blank" >RIV/00216208:11310/21:10431560 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UBQ-M1wQzL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=UBQ-M1wQzL</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs13071353" target="_blank" >10.3390/rs13071353</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Leaf Age Matters in Remote Sensing: Taking Ground Truth for Spectroscopic Studies in Hemiboreal Deciduous Trees with Continuous Leaf Formation

  • Original language description

    We examined the seasonal changes in biophysical, anatomical, and optical traits of young leaves, formed throughout the vegetative season due to sylleptic growth, and mature leaves formed by proleptic growth in spring. Leaf developmental categories contribute to the top-of-canopy reflectance and should be considered when taking ground truth for remote sensing studies (RS). Deciduous tree species, Betula pendula, Populus tremula, and Alnus incana, were sampled from May to October 2018 in an Estonian hemiboreal forest. Chlorophyll and carotenoid content were detected biochemically; leaf anatomical traits (leaf, palisade, and spongy mesophyll thickness) were measured on leaf cross-sections; leaf reflectance was measured by a spectroradiometer with an integrating sphere (350-2500 nm). Biophysical and anatomical leaf traits were related to 64 vegetation indices (VIs). Linear models based on VIs for all tested leaf traits were more robust if both juvenile and mature leaves were included. This study provides information on which VIs are interchangeable or independent. Pigment and leaf thickness sensitive indices formed PC1; water and structural trait related VIs formed an independent group associated with PC3. Type of growth and leaf age could affect the validation of biophysical and anatomical leaf trait retrieval from the optical signal. It is, therefore, necessary to sample both leaf developmental categories-young and mature-in RS, especially if sampling is only once within the vegetation season.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    <a href="/en/project/LTAUSA18154" target="_blank" >LTAUSA18154: Assessment of ecosystem function based on Earth observation of vegetation quantitative parameters retrieved from data with high spatial, spectral and temporal resolution</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote Sensing [online]

  • ISSN

    2072-4292

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    30

  • Pages from-to

    1353

  • UT code for WoS article

    000638801800001

  • EID of the result in the Scopus database

    2-s2.0-85104000555