Exfoliated Ferrierite-Related Unilamellar Nanosheets in Solution and Their Use for Preparation of Mixed Zeolite Hierarchical Structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10438559" target="_blank" >RIV/00216208:11310/21:10438559 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ues~96FjoP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ues~96FjoP</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/jacs.1c04081" target="_blank" >10.1021/jacs.1c04081</a>
Alternative languages
Result language
angličtina
Original language name
Exfoliated Ferrierite-Related Unilamellar Nanosheets in Solution and Their Use for Preparation of Mixed Zeolite Hierarchical Structures
Original language description
Direct exfoliation of layered zeolites into solutions of monolayers has remained unresolved since the 1990s. Recently, zeolite MCM-56 with the MWW topology (layers denoted mww) has been exfoliated directly in high yield by soft-chemical treatment with tetrabutylammonium hydroxide (TBAOH). This has enabled preparation of zeolite-based hierarchical materials and intimate composites with other active species that are unimaginable via the conventional solid-state routes. The extension to other frameworks, which provides broader benefits, diversified activity, and functionality, is not routine and requires finding suitable synthesis formulations, viz. compositions and conditions, of the layered zeolites themselves. This article reports exfoliation and characterization of layers with ferrierite-related structure, denoted bifer, having rectangular lattice constants like those of the FER and CDO zeolites, and thickness of approximately 2 nm, which is twice that of the so-called fer layer. Several techniques were combined to prove the exfoliation, supported by simulations: AFM; in-plane, in situ, and powder X-ray diffraction; TEM; and SAED. The results confirmed (i) the structure and crystallinity of the layers without unequivocal differentiation between the FER and CDO topologies and (ii) uniform thickness in solution (monodispersity), ruling out significant multilayered particles and other impurities. The bifer layers are zeolitic with Bronsted acid sites, demonstrated catalytic activity in the alkylation of mesitylene with benzyl alcohol, and intralayer pores visible in TEM. The practical benefits are demonstrated by the preparation of unprecedented intimately mixed zeolite composites with the mww, with activity greater than the sum of the components despite high content of inert silica as pillars.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the American Chemical Society
ISSN
0002-7863
e-ISSN
—
Volume of the periodical
143
Issue of the periodical within the volume
29
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
11052-11062
UT code for WoS article
000679913600032
EID of the result in the Scopus database
2-s2.0-85111506318