QSAR based on hybrid optimal descriptors as a tool to predict antibacterial activity against Staphylococcus aureus
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10445176" target="_blank" >RIV/00216208:11310/22:10445176 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VipYfy5clD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VipYfy5clD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31083/j.fbl2704112" target="_blank" >10.31083/j.fbl2704112</a>
Alternative languages
Result language
angličtina
Original language name
QSAR based on hybrid optimal descriptors as a tool to predict antibacterial activity against Staphylococcus aureus
Original language description
Background: Staphylococcus aureus bacterial infections are still a serious health care problem. Therefore, the development of new drugs for these infections is a constant requirement. Quantitative structure-activity relationship (QSAR) methods can assist this development. Methods: The study included 151 structurally diverse compounds with antibacterial activity against S. aureus ATCC 25923 (Endpoint 1) or the drug-resistant clinical isolate of S. aureus (Endpoint 2). QSARs based on hybrid optimal descriptors were used. Results: The predictive potential of developed models has been checked with three random splits into training, passive training, calibration, and validation sets. The proposed models give satisfactory predictive models for both endpoints examined. Conclusions: The results of the study show the possibility of SMILES-based QSAR in the evaluation of the antibacterial activity of structurally diverse compounds for both endpoints. Although the developed models give satisfactory predictive models for both endpoints examined, splitting has an apparent influence on the statistical quality of the models.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Frontiers in Bioscience - Landmark
ISSN
2768-6701
e-ISSN
2768-6698
Volume of the periodical
27
Issue of the periodical within the volume
4
Country of publishing house
SG - SINGAPORE
Number of pages
13
Pages from-to
112
UT code for WoS article
000797787300008
EID of the result in the Scopus database
2-s2.0-85128844118