The evolution of brain neuron numbers in amniotes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10447195" target="_blank" >RIV/00216208:11310/22:10447195 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.uYh3Itt0M" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.uYh3Itt0M</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1073/pnas.2121624119" target="_blank" >10.1073/pnas.2121624119</a>
Alternative languages
Result language
angličtina
Original language name
The evolution of brain neuron numbers in amniotes
Original language description
Reconstructing the evolution of brain information-processing capacity is paramount for understanding the rise of complex cognition. Comparative studies of brain evolution typically use brain size as a proxy. However, to get a less biased picture of the evolutionary paths leading to high cognitive power, we need to compare brains not by mass but by numbers of neurons, which are their basic computational units. This study reconstructs the evolution of brains across amniotes by directly analyzing neuron numbers by using the largest dataset of its kind and including essential data on reptiles. We show that reptiles have not only small brains relative to body size but also low neuronal densities, resulting in average neuron numbers over 20 times lower than those in birds and mammals of similar body size. Amniote brain evolution is characterized by the following four major shifts in neuron-brain scaling. The most dramatic increases in brain neurons occurred independently with the appearance of birds and mammals, resulting in convergent neuron scaling in the two endotherm lineages. The other two major increases in the number of neurons happened in core land birds and anthropoid primates, which are two groups known for their cognitive prowess. Interestingly, relative brain size is associated with relative neuronal cell density in reptiles, birds, and primates but not in other mammals. This has important implications for studies using relative brain size as a proxy when looking for evolutionary drivers of animal cognition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10613 - Zoology
Result continuities
Project
<a href="/en/project/GA18-15020S" target="_blank" >GA18-15020S: Evolution of brain complexity and processing capacity in amphibians and reptiles: A quantitative approach to understanding tetrapod brain evolution</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the National Academy of Sciences of the United States of America
ISSN
0027-8424
e-ISSN
1091-6490
Volume of the periodical
119
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
e2121624119
UT code for WoS article
000771757800002
EID of the result in the Scopus database
2-s2.0-85125979299