All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The evolution of brain neuron numbers in amniotes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10447195" target="_blank" >RIV/00216208:11310/22:10447195 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.uYh3Itt0M" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.uYh3Itt0M</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1073/pnas.2121624119" target="_blank" >10.1073/pnas.2121624119</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The evolution of brain neuron numbers in amniotes

  • Original language description

    Reconstructing the evolution of brain information-processing capacity is paramount for understanding the rise of complex cognition. Comparative studies of brain evolution typically use brain size as a proxy. However, to get a less biased picture of the evolutionary paths leading to high cognitive power, we need to compare brains not by mass but by numbers of neurons, which are their basic computational units. This study reconstructs the evolution of brains across amniotes by directly analyzing neuron numbers by using the largest dataset of its kind and including essential data on reptiles. We show that reptiles have not only small brains relative to body size but also low neuronal densities, resulting in average neuron numbers over 20 times lower than those in birds and mammals of similar body size. Amniote brain evolution is characterized by the following four major shifts in neuron-brain scaling. The most dramatic increases in brain neurons occurred independently with the appearance of birds and mammals, resulting in convergent neuron scaling in the two endotherm lineages. The other two major increases in the number of neurons happened in core land birds and anthropoid primates, which are two groups known for their cognitive prowess. Interestingly, relative brain size is associated with relative neuronal cell density in reptiles, birds, and primates but not in other mammals. This has important implications for studies using relative brain size as a proxy when looking for evolutionary drivers of animal cognition.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10613 - Zoology

Result continuities

  • Project

    <a href="/en/project/GA18-15020S" target="_blank" >GA18-15020S: Evolution of brain complexity and processing capacity in amphibians and reptiles: A quantitative approach to understanding tetrapod brain evolution</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the National Academy of Sciences of the United States of America

  • ISSN

    0027-8424

  • e-ISSN

    1091-6490

  • Volume of the periodical

    119

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    e2121624119

  • UT code for WoS article

    000771757800002

  • EID of the result in the Scopus database

    2-s2.0-85125979299