All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Salt Counterion Valency Controls the Ionization and Morphology of Weak Polyelectrolyte Miktoarm Stars

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10448725" target="_blank" >RIV/00216208:11310/22:10448725 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XFbGCDNITZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=XFbGCDNITZ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.macromol.2c00133" target="_blank" >10.1021/acs.macromol.2c00133</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Salt Counterion Valency Controls the Ionization and Morphology of Weak Polyelectrolyte Miktoarm Stars

  • Original language description

    The properties of weak polyelectrolyte polymer blocks vary as a function of the ionic strength and salt counterion valency. However, the specific conformational and ionization behaviors and overall morphologies of star-like micelles formed by triblock copolymers containing hydrophobic (e.g., PS), weak polyelectrolyte (e.g., PAA), and nonionizable hydrophilic (e.g., PEO) blocks remain unknown. In order to predict how these block polymers respond to variations in ionic strength and salt counterion valency, we used coarse-grained models and performed Hamiltonian Monte Carlo simulations in the reaction ensemble, assuming that hydrophobic blocks form the micellar core and describing the micelles as miktoarm stars with nonionizable and dynamically ionizable parts (weak polyelectrolyte). By sequentially varying the order of the blocks in the unimer chains, the pH, the salt concentration, and the salt counterion valency, we found that the degree of ionization of the ionizable arms strongly depends on the order of the blocks in the unimer chains. Furthermore, the star is able to capture all divalent counterions from the solution until its salt capacity. At low pH values, the radius of gyration of the star, R(g), increases with the salt concentration similarly to the degree of ionization of the ionizable region. Conversely, at high pH values, R(g) increases until peaking at the salt capacity concentration but then returns to values similar to those of the neutral polymer star. The star morphologies vary as a function of pH, salt concentration, and salt counterion valency. The stars resemble core-shell and octopus-like particles at a high pH and a high concentration of the monovalent salt but form core-shell, Janus, and patchy particles at a high pH and a high concentration of divalent salt. Combined, our findings demonstrate that the morphological type of a star-like micelle can be controlled by changing the salt counterion valency.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    <a href="/en/project/GA19-10429S" target="_blank" >GA19-10429S: Controlling encapsulation and release by charge regulation and multivalent interactions with supramolecular polymer carriers</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Macromolecules

  • ISSN

    0024-9297

  • e-ISSN

    1520-5835

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    14

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    6247-6259

  • UT code for WoS article

    000826995600001

  • EID of the result in the Scopus database

    2-s2.0-85135981107