All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Combining Landsat 8 and Sentinel-2 Data in Google Earth Engine to Derive Higher Resolution Land Surface Temperature Maps in Urban Environment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10449320" target="_blank" >RIV/00216208:11310/22:10449320 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qxrEXT1eUs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=qxrEXT1eUs</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs14164076" target="_blank" >10.3390/rs14164076</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Combining Landsat 8 and Sentinel-2 Data in Google Earth Engine to Derive Higher Resolution Land Surface Temperature Maps in Urban Environment

  • Original language description

    Thermal infrared (TIR) satellite imagery collected by multispectral scanners is important to map land surface temperature on a global scale. However, the TIR spectral bands are typically available in coarser spatial resolution than other multispectral bands of shorter wavelengths. Therefore, the spatial resolution of the derived land surface temperature (LST) is limited to around 100 m. This constrains the applications of such thermal satellite sensors in which finer detail of LST spatial pattern is relevant, especially in an urban environment where the land cover structure is complex. Among the missions deployed on the Earth&apos;s orbit, NASA&apos;s TIRS sensor onboard Landsat 8 and Landsat 9, and ASTER onboard Terra provide the highest spatial resolution of the thermal band. On the other hand, ESA&apos;s Sentinel-2 multispectral imagery is collected at a higher spatial resolution of 10 m with a 5-day temporal resolution, but scanning in the TIR band is not available. This study makes use of the known relationship between LST and land cover metrics, such as the normalized difference vegetation index (NDVI), built-up index (NDBI), and water index (NDWI). We define a multiple linear regression model based on the spectral indices and LST derived from Landsat 8 data to inform the same model in which the equivalent spectral indices derived from Sentinel-2 are used to predict LST at 10 m resolution. Results of this approach are demonstrated in a case study for Kosice city, Slovakia, where the multiple linear model based on Landsat 8 data achieved an R-2 of 0.642. The correlation between the observed Landsat 8 LST and predicted LST from Sentinel-2 aggregated to the same resolution as the observed LST was high (r = 0.91). Despite the imperfections of the downscaling model, the derived LST at 10 m resolution provides a better perception of the LST field that can be easily associated with land cover features present in urban environment. The LST downscaling approach was implemented into Google Earth Engine. It provides a user-friendly online application that can be used for any city or urban region for generating a more realistic spatial pattern of LST than can be directly observed by contemporary Earth observation satellites. The tool aids in urban decision making and planning on how to mitigate overheating of cities to improve the life quality of their citizens.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10508 - Physical geography

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote Sensing [online]

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

    4076

  • UT code for WoS article

    000845278800001

  • EID of the result in the Scopus database

    2-s2.0-85137756626