All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10452100" target="_blank" >RIV/00216208:11310/22:10452100 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QS2K5JfMX~" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QS2K5JfMX~</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.macromol.1c02489" target="_blank" >10.1021/acs.macromol.1c02489</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution

  • Original language description

    The swelling of polyelectrolyte hydrogels has beenoften explained using simple models derived from the Flory-Rehnermodel. While these models qualitatively predict the experimentallyobserved trends, they also introduce strong approximations andneglect some important contributions. Consequently, they some-times incorrectly ascribe the observed trends to contributions whichare of minor importance under the given conditions. In this work, weinvestigate the swelling properties of weak (pH-responsive)polyelectrolyte gels at various pH and salt concentrations, using ahierarchy of models, gradually introducing various approximations.For thefirst time, we introduce a three-dimensional particle-basedmodel which accounts for the topology of the hydrogel network, forelectrostatic interactions between gel segments and small ions, andfor acid-base equilibrium coupled to the Donnan partitioning of small ions. This model is the most accurate one; therefore, we useit as a reference when assessing the effect of various approximations. As thefirst approximation, we introduce the affine deformation,which allows us to replace the network of many chains by a single chain, while retaining the particle-based representation. In the nextstep, we use the mean-field approximation to replace particles by densityfields, combining the Poisson-Boltzmann equation withelastic stretching of the chain. Finally, we introduce an ideal gel model by neglecting the electrostatics while retaining all otherfeatures of the previous model. Comparing predictions from all four models allows us to understand which contributions dominate athigh or low pH or salt concentrations. We observe that thefield-based models overestimate the ionization degree of the gel becausethey underestimate the electrostatic interactions. Nevertheless, a cancellation of effects on the electrostatic interactions and Donnanpartitioning causes both particle-based andfield-based models to consistently predict the swelling of the gels as a function of pH andsalt concentration. Thus, we can conclude that any of the employed models can rationalize the known experimental trends in gelswelling, however, only the particle-based models fully account for the true effects causing these trends. The full understanding ofdifferences between various models is important when interpreting experimental results in the framework of existing theories and forascribing the observed trends to particular contributions, such as the Donnan partitioning of ions, osmotic pressure, or electrostaticinteractions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/GC21-31978J" target="_blank" >GC21-31978J: Simulations of reaction equilibria in polymer systems - method development and applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Macromolecules

  • ISSN

    0024-9297

  • e-ISSN

    1520-5835

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    3176-3188

  • UT code for WoS article

    000796258500018

  • EID of the result in the Scopus database

    2-s2.0-85125793570