Gas-phase isomerisation of m-xylene on isoreticular zeolites with tuneable porosity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10453140" target="_blank" >RIV/00216208:11310/22:10453140 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=v5NGlBezMC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=v5NGlBezMC</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cattod.2021.11.044" target="_blank" >10.1016/j.cattod.2021.11.044</a>
Alternative languages
Result language
angličtina
Original language name
Gas-phase isomerisation of m-xylene on isoreticular zeolites with tuneable porosity
Original language description
Nanoporous crystalline aluminosilicates, zeolites, are synthesised by solvothermal method producing three-dimensional (3D) crystals. An alternative, more controllable approach of zeolite synthesis - ADOR - can be used for preparation of isoreticular zeolites with tuneable porosity. Zeolites porosity allows their wide use as isomerisation catalysts due to their shape selectivity effects. Selective isomerisation of m-xylene towards p-xylene is an industrially important reaction due to a high demand for the latter as a substrate for terephthalic acid production. In this work, we investigated the influence of pore size (shape selectivity effect) on the isomerization of m-xylene using a system of isoreticular Al-containing zeolites. These materials, prepared by ADOR approach (UTL, IPC-7, IPC-2, IPC-6, and IPC-4) had different layers connectivity, and therefore various channel systems. We tracked the influence of the pore systems of ADOR zeolites (8- up to 14-ring channels) on the catalytic performance in gas-phase m-xylene isomerisation. We investigated the crystallinity and interlayer distances, phase purity, textural properties of prepared materials, their crystals morphology, and aluminium content. M-xylene isomerisation was carried out in a fixed-bed reactor at 350 °C. ADOR catalysts were compared with standard ZSM-5 zeolite. We show the dependence of zeolite porosity on the performance in isomerisation of m- to p-xylene. Smaller pore zeolites: IPC-4 (8- and 10-ring channels) and IPC-6 (8-, 10- and 12-ring channels) exhibited the lowest conversions, while the highest conversion and p-xylene yields were observed for IPC-2 (10-and 12-ring channels). Presence of extra-large, 14-ring channels (IPC-7 and UTL) resulted in the drop of selectivity due to the xylene disproportionation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Catalysis Today
ISSN
0920-5861
e-ISSN
1873-4308
Volume of the periodical
390
Issue of the periodical within the volume
May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
78-91
UT code for WoS article
000783098100001
EID of the result in the Scopus database
2-s2.0-85120696759