Does previous exposure to extreme precipitation regimes result in acclimated grassland communities?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10453732" target="_blank" >RIV/00216208:11310/22:10453732 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4bcZz5w7WY" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4bcZz5w7WY</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2022.156368" target="_blank" >10.1016/j.scitotenv.2022.156368</a>
Alternative languages
Result language
angličtina
Original language name
Does previous exposure to extreme precipitation regimes result in acclimated grassland communities?
Original language description
Climate change will likely increase weather persistence in the mid-latitudes, resulting in precipitation regimes (PR) with longer dry and wet periods compared to historic averages. This could affect terrestrial ecosystems substantially through the increased occurrence of repeated, prolonged drought and water logging conditions. Climate history is an important determinant of ecosystem responses to consecutive environmental extremes, through direct damage, community restructuring as well as morphological and physiological acclimation in species or individuals. However, it is unclear how community restructuring and individual metabolic acclimation effects interact to determine ecosystem-responses to subsequent climate extremes. Here, we investigated, if and how, differences in exposure to extreme or historically normal PR induced long-lasting (i.e. legacy) effects at the level of community (e.g., species composition), plant (e.g., biomass), andmolecular composition (e.g., sugars, lipids, stress markers). Experimental grassland communities were exposed to long (extreme) or short (historically normal) dry/wet cycles in year 1 (Y1), followed by exposure to an identical PR or the opposite PR in year 2 (Y2). Results indicate that exposure to extreme PR in Y1, reduced diversity but induced apparent acclimation effects in all climate scenarios, stimulating biomass (higher productivity and structural sugar content) in Y2. In contrast, plants pre-exposed to normal PR, showed more activated stress responses (higher proline and antioxidants) under extreme PR in Y2. Overall, Y1 acclimation effects were strongest in the dominant grasses, indicating comparatively high phenotypical plasticity. However, Y2 drought intensity also correlated with grass productivity and structural sugar findings, suggesting that responses to short-termsoil water deficits contributed to the observed patterns. Interactions between different legacy effects are discussed. We conclude that more extreme PR will likely alter diversity in the short-to midterm and select for acclimated grassland communities with increased productivity and attenuated molecular stress responses under future climate regimes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Science of the Total Environment
ISSN
0048-9697
e-ISSN
1879-1026
Volume of the periodical
838
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
156368
UT code for WoS article
000884775100010
EID of the result in the Scopus database
2-s2.0-85131459860