All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10474794" target="_blank" >RIV/00216208:11310/22:10474794 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KzmhnwFnjs" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KzmhnwFnjs</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1073/pnas.2112737119" target="_blank" >10.1073/pnas.2112737119</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated

  • Original language description

    Tropical alpine floras are renowned for high endemism, spectacular giant rosette plants testifying to convergent adaptation to harsh climates with nightly frosts, and recruitment dominated by long-distance dispersal from remote areas. In contrast to the larger, more recent (late Miocene onward) and contiguous expanses of tropical alpine habitat in South America, the tropical alpine flora in Africa is extremely fragmented across small patches on distant mountains of variable age (Oligocene onward). How this has affected the colonization and diversification history of the highly endemic but species-poor afroalpine flora is not well known. Here we infer phylogenetic relationships of similar to 20% of its species using novel genome skimming data and published matrices and infer a timeframe for species origins in the afroalpine region using fossil-calibrated molecular clocks. Although some of the mountains are old, and although stem node ages may substantially predate colonization, most lineages appear to have colonized the afroalpine during the last 5 or 10 My. The accumulation of species increased exponentially toward the present. Taken together with recent reports of extremely low intrapopulation genetic diversity and recent intermountain population divergence, this points to a young, unsaturated, and dynamic island scenario. Habitat disturbance caused by the Pleistocene climate oscillations likely induced cycles of colonization, speciation, extinction, and recolonization. This study contributes to our understanding of differences in the histories of recruitment on different tropical sky islands and on oceanic islands, providing insight into the general processes shaping their remarkable floras.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    <a href="/en/project/GA20-10878S" target="_blank" >GA20-10878S: Tropical-alpine plant radiations: an intercontinental comparison of timing and the role of allopatry, hybridization and niche differentiation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the National Academy of Sciences of the United States of America

  • ISSN

    0027-8424

  • e-ISSN

    1091-6490

  • Volume of the periodical

    119

  • Issue of the periodical within the volume

    22

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    e2112737119

  • UT code for WoS article

    001051443200002

  • EID of the result in the Scopus database

    2-s2.0-85130933727