Glyphosate versus glyphosate based ionic liquids: Effect of cation on glyphosate biodegradation, soxA and phnJ genes abundance and microbial populations changes during soil bioaugmentation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10468256" target="_blank" >RIV/00216208:11310/23:10468256 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DGvxlLTS60" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DGvxlLTS60</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chemosphere.2022.137717" target="_blank" >10.1016/j.chemosphere.2022.137717</a>
Alternative languages
Result language
angličtina
Original language name
Glyphosate versus glyphosate based ionic liquids: Effect of cation on glyphosate biodegradation, soxA and phnJ genes abundance and microbial populations changes during soil bioaugmentation
Original language description
The applicability of herbicidal ionic liquids (HILs) as an alternative form of herbicides is currently evaluated. Yet, the available research is lacking information on the behaviour of herbicidal ionic liquids upon addition to the environment, i.e., if cations and anions act as separate moieties or remain an ionic salt. Hence, we tested degradation of five HILs with the glyphosate anion, their bioavailability in soil, toxicity towards microorganisms, impact on the biodiversity and the abundance of phnJ and soxA genes. The cations were proven to be slightly or moderately toxic. The properties of cations determined the properties of the whole formulation, which might suggest that cations and anion act as the independent mixture of ions. The mineralisation efficiencies were in the range of 15-53%; however, in the case of cations (except non-toxic choline), only 13-20% were bioavailable for degradation. The hydrophobic cations were proven to be highly sorbed, while the anion was readily available for microbial degradation regardless of its counterion. The approach to enrich test samples with isolated microor-ganisms specialised in glyphosate degradation resulted in higher degradation efficiencies, yet not high enough to mitigate the negative impact of cations. In addition, increased activity of enzymes participating in glyphosate degradation was observed. In the view of obtained results, the use of cationic surfactants in HILs structure is not recommended, as sorption was shown to be determining factor in HILs degradation efficiency. Moreover, ob-tained results indicate that corresponding ions in HILs might act as separate moieties in the environment.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chemosphere
ISSN
0045-6535
e-ISSN
1879-1298
Volume of the periodical
316
Issue of the periodical within the volume
March
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
137717
UT code for WoS article
000974475200001
EID of the result in the Scopus database
2-s2.0-85146476673