Reduce uncertainty in soil hydrological modeling: A comparison of soil hydraulic parameters generated by random sampling and pedotransfer function
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10469937" target="_blank" >RIV/00216208:11310/23:10469937 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=en_DbHvMzv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=en_DbHvMzv</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jhydrol.2023.129740" target="_blank" >10.1016/j.jhydrol.2023.129740</a>
Alternative languages
Result language
angličtina
Original language name
Reduce uncertainty in soil hydrological modeling: A comparison of soil hydraulic parameters generated by random sampling and pedotransfer function
Original language description
Numerical simulation of unsaturated soil hydrology relies on calibrated soil hydraulic parameters, which are subject to uncertainty due to imperfect information during the inverse modelling. This study investigates the effectiveness of reducing parameter uncertainty using the recently developed Rosetta 3 pedotransfer function. The GLUE method was employed for numerical modeling using the Darcy-Richards equation under two strategies for sampling Mualem-van Genuchten (MvG) parameters: the first uses conventional random generation of MvG parameters (GLUE-random), while the second adopts Rosetta 3 to transfer soil particle composition to MvG parameter (GLUE-Rosetta). Both approaches were used for inverse modeling of 9 typical soils, each with a recommended parameter set defined as true values and associated soil moisture dynamics as observations. The posterior parameters selected with both GLUE-random and GLUE-Rosetta show an equifinality phenomenon. GLUE-random fails to provide well-constrained posterior parameters to recover the pre-defined true values, and its posterior results of soil water characteristic curve (SWCC) and soil hydraulic conductivity function (HCF) are poorly constrained. In contrast, GLUE-Rosetta significantly improves the accuracy of the inversely-estimated soil hydraulic parameters, and the ensemble of posterior SWCC and HCF also encompasses the predefined true curves. The results demonstrate the effectiveness of using Rosetta 3 to reduce the dimensionality of the opti-mization problem, which results in reliable estimation of soil hydraulic parameters and soil particle composi-tions. Moreover, GLUE-Rosetta outperforms GLUE-random in predicting soil moisture dynamics under different rainfall intensities. Overall, it is recommended to integrate Rosetta 3 with existing optimization tools to reduce the uncertainty of soil parameters and support more reliable modeling of unsaturated soil hydrology.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10508 - Physical geography
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Hydrology
ISSN
0022-1694
e-ISSN
1879-2707
Volume of the periodical
623
Issue of the periodical within the volume
May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
129740
UT code for WoS article
001023829700001
EID of the result in the Scopus database
2-s2.0-85161694897